储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2900-2920.doi: 10.19799/j.cnki.2095-4239.2021.0595

• 创刊十周年专刊 • 上一篇    下一篇

高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略

栗志展(), 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽   

  1. 华中科技大学化学与化工学院,能量转化与储存材料化学教育部重点实验室,湖北 武汉 430074
  • 收稿日期:2021-11-11 修回日期:2021-12-27 出版日期:2022-09-05 发布日期:2022-08-30
  • 通讯作者: 王得丽 E-mail:944264721@qq.com
  • 作者简介:栗志展(1997—),男,硕士研究生,研究方向为锂离子电池与钠离子电池正极材料,E-mail:944264721@qq.com
  • 基金资助:
    国家自然科学基金(91963109);华中科技大学创新研究基金(2019 KFYRCPY100)

High-nickel ternary layered cathode materials for lithium-ion batteriesResearch progresschallenges and improvement strategies

Zhizhan LI(), Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG   

  1. Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2021-11-11 Revised:2021-12-27 Online:2022-09-05 Published:2022-08-30
  • Contact: Deli WANG E-mail:944264721@qq.com

摘要:

随着锂离子电池在新能源汽车领域应用逐步扩大,续航里程成为制约新能源汽车发展的关键因素,提高锂离子电池的能量密度是解决续航焦虑的有效途径,高镍三元层状材料具有比容量高、成本低及安全性相对较好等优点,被认为是最具前景的高比能锂离子电池正极材料之一。然而,随着三元层状材料中镍含量提高,其循环稳定性和热稳定性显著下降。本工作回顾了锂离子电池正极材料的发展历程,分析了三元层状材料向高镍方向发展的必要性;基于高镍三元层状正极材料的研究现状对当前高镍三元层状材料存在的挑战进行了总结,从阳离子混排、结构退化、微裂纹、表面副反应、热稳定性多个方面综合分析了材料的失效机制;针对高镍三元层状材料存在的问题,综述了表面涂层、元素掺杂、单晶结构以及浓度梯度设计等方面的改性策略,重点探讨了各种改善策略的研究进展以及对高镍三元层状材料电化学性能的影响机理;最后归纳了上述改善策略的特点,基于单一改善策略的优势和不同改善策略的耦合效应,展望了高镍三元层状材料改善策略的发展方向,并提出了多重改善策略协同应用的可行性方案。

关键词: 锂离子电池, 正极材料, 层状结构, 高镍三元, 改性策略

Abstract:

With the gradual expansion of lithium-ion battery applications in the field of new energy vehicles, endurance mileage has become a key factor restricting the development of new energy vehicles. Improving the energy density of lithium-ion batteries is an effective way to solve range anxiety. Owing to their high specific capacity, low cost, and relatively good safety, high-nickel ternary layered materials are now one of the most promising cathode candidates for the next high-specific energy lithium-ion batteries. However, increased nickel content significantly decreases ternary layered materials' cycling and thermal stability. In this regard, we first summarize the development process of cathode materials for lithium ion batteries and analyze the necessity of developing ternary layered materials for high nickel, after which the current challenges based on the research status of high nickel ternary layered cathode materials are systematically discussed. The failure mechanism of the material is comprehensively analyzed by considering cation mixing, structural degradation, microcracks, surface side reactions, and thermal stability. In addition, considering the problems of high nickel ternary layered materials, some effective and advanced improvement strategies, including surface coating, element doping, single-crystal structure, and concentration gradient design, are reviewed. The research progress of various improvement strategies and modification mechanisms is highlighted. Finally, we compare the characteristics of various improvement strategies. Based on the advantages of a single improvement strategy and the coupling effect of different improvement strategies, we look forward to the development direction of the improvement strategy for high nickel ternary layered materials and propose feasibility programs for the collaborative application of multiple improvement strategies.

Key words: lithium-ion battery, cathode material, layered structure, high-nickel ternary, modification strategy

中图分类号: