储能科学与技术 ›› 2022, Vol. 11 ›› Issue (8): 2653-2663.doi: 10.19799/j.cnki.2095-4239.2022.0116
收稿日期:
2022-03-03
修回日期:
2022-04-10
出版日期:
2022-08-05
发布日期:
2022-08-03
通讯作者:
徐超航
E-mail:yuhzhouyu@163.com;xchwhut@ whut.edu.cn
作者简介:
喻航(1997—),男,硕士,主要研究方向为储能电站监测预警和事故处置技术,E-mail:yuhzhouyu@163.com;
基金资助:
Hang YU(), Ying ZHANG, Chaohang XU(), Sihan YU
Received:
2022-03-03
Revised:
2022-04-10
Online:
2022-08-05
Published:
2022-08-03
Contact:
Chaohang XU
E-mail:yuhzhouyu@163.com;xchwhut@ whut.edu.cn
摘要:
储能电站锂离子电池火灾事故频发引起了人们对锂离子电池热失控特性和防控技术的关注与重视。本文将储能电站锂离子电池在外部滥用条件下的热失控演化过程划分为3个阶段和6个过程,分别是热失控早期、热失控发生期、火灾初期3个阶段和放热、产气、增压、喷烟、起火燃烧和气体爆炸6个过程。整个演化过程各阶段并不是独立的,而是化学反应重叠交叉进行的。因储能电站火灾与传统火灾燃烧特性差异较大,需根据其热失控演化过程特点提出针对性的防控措施。本文梳理了近年来锂离子电池热失控特性和防控技术的研究进展,对锂离子电池热失控演化过程、监测预警技术、热失控抑制和灭火技术等方面进行了归纳总结与展望。
中图分类号:
喻航, 张英, 徐超航, 余思瀚. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663.
Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663.
表1
储能电站火灾爆炸事故统计"
序号 | 日期 | 事故简述 | 可能事故诱因 |
---|---|---|---|
1 | 2022.02.13 | 加州Moss Landing储能电站项目大约有10个电池架被融化 | 原因未知 |
2 | 2022.01.17 | 韩国义城庆尚北新谷里某太阳能发电厂储能系统发生火灾 | 原因未知 |
3 | 2022.01.12 | 韩国蔚山南区SK能源公司电池储能大楼发生火灾 | 电池过充 |
4 | 2020.07.30 | 澳大利亚维多利亚州特斯拉最大储能电站Megapack发生火灾 | 测试期间原因未知 |
5 | 2021.07.19 | 美国伊利诺伊州Grand Ridge储能电站的电池起火 | 原因未知 |
6 | 2021.04.16 | 北京丰台区南四环的集美大红门商场磷酸铁锂储能电站起火、爆炸 | 电池过充导致热失控 |
7 | 2020.07.30 | 澳大利亚维多利亚州特斯拉最大储能电站Megapack发生火灾 | 测试期间原因未知 |
8 | 2019.05 | 北京某用户侧储能电站集装箱发生火灾 | 运行维护中 |
9 | 2010.01.14 | 韩国全南莞岛5.22 MW太阳能项目充电中发生起火 | 单体过充导致热失控 |
10 | 2018.10.18 | 韩国京畿道17.7 MW调频项目储能集装箱检查维修中起火 | 电池单体热失控 |
11 | 2018.08.03 | 江苏扬中某用户侧磷酸铁锂储能电站发生火灾,一个储能集装箱整体烧毁 | 一节电池起火后热失控扩展引起 |
12 | 2017.12.22 | 山西某电厂9 MW调频项目2号储能集装箱柜发生火灾,并伴有爆炸等次生灾害 | 电池单体内短路导致热失控 |
13 | 2017.05 | 山西某储能电站调频项目三元锂电池储能单元充电后休止时发生火灾 | 电池单体内短路导致热失控 |
14 | 2017.03.07 | 山西某火力发电厂储能系统发生火灾,火灾烧毁锂离子电池储能单元一个,储能锂电池包416个,电池管理系统26个 | 过充导致热失控 |
1 | LYU P Z, LIU X J, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage[J]. Energy Storage Materials, 2020, 31: 195-220. |
2 | JIN Y, ZHAO Z X, MIAO S, et al. Explosion hazards study of grid-scale lithium-ion battery energy storage station[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.102987. |
3 | ZHANG Q S, LIU T T, WANG Q. Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.103063. |
4 | ZHU Y L, WANG C J, GAO F, et al. Rupture and combustion characteristics of lithium-ion battery under overcharge[J]. Journal of Energy Storage, 2021, 38: doi: 10.1016/j.est.2021.102571. |
5 | DA YU, REN D S, DAI K R, et al. Failure mechanism and predictive model of lithium-ion batteries under extremely high transient impact[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103191. |
6 | CHEN M Y, LIU J H, OUYANG D X, et al. A large-scale experimental study on the thermal failure propagation behaviors of primary lithium batteries[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101657. |
7 | ZHOU Z Z, ZHOU X D, WANG D, et al. Experimental analysis of lengthwise/transversal thermal characteristics and jet flow of large-format prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2021, 195: doi: 10.1016/j.applthermaleng.2021.117244. |
8 | MAO B B, ZHAO C P, CHEN H D, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281: doi: 10.1016/j.apenergy.2020.116054. |
9 | MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110717. |
10 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
11 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
12 | KOCH S, FILL A, BIRKE K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources, 2018, 398: 106-112. |
13 | ZHANG G X, WEI X Z, TANG X, et al. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110790. |
14 | SUN J H, MAO B B, WANG Q S. Progress on the research of fire behavior and fire protection of lithium ion battery[J]. Fire Safety Journal, 2021, 120: 103119. |
15 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
16 | MAO B B, HUANG P F, CHEN H D, et al. Self-heating reaction and thermal runaway criticality of the lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 149: doi: 10.1016/j.ijheatmasstransfer.2019.119178. |
17 | HOU J X, FENG X N, WANG L, et al. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries[J]. Energy Storage Materials, 2021, 39: 395-402. |
18 | CHEN X X, YAN S S, TAN T H, et al. Supramolecular "flame-retardant" electrolyte enables safe and stable cycling of lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 182-190. |
19 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
20 | LIU J L, HUANG Z H, SUN J H, et al. Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2022, 526: doi: 10.1016/j.jpowsour.2022.231136. |
21 | ZHAO C P, WANG T H, HUANG Z, et al. Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test[J]. Journal of Energy Storage, 2021, 38: doi: 10.1016/j.est.2021.102519. |
22 | YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. |
23 | LI W F, RAO S, XIAO Y, et al. Fire boundaries of lithium-ion cell eruption gases caused by thermal runaway[J]. iScience, 2021, 24(5): doi: 10.1016/j.isci.2021.102401. |
24 | ZHANG L, DUAN Q L, MENG X D, et al. Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway[J]. Energy Conversion and Management, 2022, 252: doi: 10.1016/j.enconman.2021.115091. |
25 | MIER F A, HILL S M M, LAMB J, et al. Non-invasive internal pressure measurement of 18650 format lithium ion batteries during thermal runaway[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104322. |
26 | MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191(2): 568-574. |
27 | SANTHANAGOPALAN S, RAMADASS P, ZHANG J. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557. |
28 | OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. |
29 | GAO X W, ZHOU Y N, HAN D Z, et al. Thermodynamic understanding of Li-dendrite formation[J]. Joule, 2020, 4(9): 1864-1879. |
30 | HUANG L W, ZHANG Z S, WANG Z P, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019.100811. |
31 | PAN Y, FENG X N, ZHANG M X, et al. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections[J]. Journal of Cleaner Production, 2020, 255: doi: 10.1016/j.jclepro.2020.120277. |
32 | ZHAO C P, SUN J H, WANG Q S. Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter[J]. Journal of Energy Storage, 2020, 28: doi: 10.1016/j.est.2020.101232. |
33 | KENNEDY R W, MARR K C, EZEKOYE O A. Gas release rates and properties from lithium cobalt oxide lithium ion battery arrays[J]. Journal of Power Sources, 2021, 487: doi: 10.1016/j.jpowsour.2020.229388. |
34 | OGUNFUYE S, SEZER H, SAID A O, et al. An analysis of gas-induced explosions in vented enclosures in lithium-ion batteries[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104438. |
35 | JIANG L L, DENG Z W, TANG X L, et al. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data[J]. Energy, 2021, 234: doi: 10.1016/j.energy. 2021.121266. |
36 | SUN L, SUN W, YOU F Q. Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias[J]. Applied Energy, 2020, 271: doi: 10.1016/j.apenergy.2020.115243. |
37 | WANG S X, LI K X, TIAN Y, et al. Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithium-ion power battery[J]. Applied Thermal Engineering, 2019, 152: 204-214. |
38 | RANI M F H, RAZLAN Z M, SHAHRIMAN A B, et al. Comparative study of surface temperature of lithium-ion polymer cells at different discharging rates by infrared thermography and thermocouple[J]. International Journal of Heat and Mass Transfer, 2020, 153: doi: 10.1016/j.ijheatmasstransfer.2020.119595. |
39 | ALCOCK K M, GRAMMEL M, GONZÁLEZ-VILA Á, et al. An accessible method of embedding fibre optic sensors on lithium-ion battery surface for in situ thermal monitoring[J]. Sensors and Actuators A: Physical, 2021, 332: doi: 10.1016/j.sna.2021.113061. |
40 | YU Y F, VERGORI E, WORWOOD D, et al. Distributed thermal monitoring of lithium ion batteries with optical fibre sensors[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021. 102560. |
41 | DONG P, LIU Z X, WU P, et al. Reliable and early warning of lithium-ion battery thermal runaway based on electrochemical impedance spectrum[J]. Journal of the Electrochemical Society, 2021, 168(9): doi: 10.1149/1945-7111/ac239b. |
42 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
43 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
44 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
45 | XIONG R, LI L L, TIAN J P. Towards a smarter battery management system: A critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405: 18-29. |
46 | LIAO Z H, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: doi: 10.1016/j.jpowsour. 2019.226879. |
47 | Koch S, Birke K P, Kuhn R. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. batteries, 2018, 4(2): doi: 10.3390/batteries4020016. |
48 | SHEIKH M, ELMARAKBI A, ELKADY M. Thermal runaway detection of cylindrical 18650 lithium-ion battery under quasi-static loading conditions[J]. Journal of Power Sources, 2017, 370: 61-70. |
49 | 刘同宇, 李师, 付卫东, 等. 大容量磷酸铁锂动力电池热失控预警策略研究[J]. 中国安全科学学报, 2021, 31(11): 120-126. |
LIU T Y, LI S, FU W D, et al. Study on early warning strategy of large LFP traction battery's thermal runaway[J]. China Safety Science Journal, 2021, 31(11): 120-126. | |
50 | LIU T, LIU Y P, WANG X S, et al. Cooling control of thermally-induced thermal runaway in 18, 650 lithium ion battery with water mist[J]. Energy Conversion and Management, 2019, 199: doi: 10.1016/j.enconman.2019.111969. |
51 | LIU T, TAO C F, WANG X S. Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules[J]. Applied Energy, 2020, 267: doi: 10.1016/j.apenergy.2020.115087. |
52 | XU C S, ZHANG F S, FENG X N, et al. Experimental study on thermal runaway propagation of lithium-ion battery modules with different parallel-series hybrid connections[J]. Journal of Cleaner Production, 2021, 284: doi: 10.1016/j.jclepro.2020.124749. |
53 | LIU T, HU J, TAO C F, et al. Effect of parallel connection on 18650-type lithium ion battery thermal runaway propagation and active cooling prevention with water mist[J]. Applied Thermal Engineering, 2021, 184: doi: 10.1016/j.applthermaleng.2020.116291. |
54 | HUANG Z H, LIU P J, DUAN Q L, et al. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery[J]. Journal of Power Sources, 2021, 495: doi: 10.1016/j.jpowsour.2021.229795. |
55 | YUAN C C, WANG Q S, WANG Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2019, 153: 39-50. |
56 | NIU J Y, DENG S Y, GAO X N, et al. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation[J]. Journal of Energy Storage, 2022, 47: doi: 10.1016/j.est.2021. 103557. |
57 | WENG J W, OUYANG D X, YANG X Q, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: doi: 10.1016/j.enconman.2019.112071. |
58 | XU J J, GUO P Y, DUAN Q L, et al. Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires[J]. Applied Thermal Engineering, 2020, 171: doi: 10.1016/j.applthermaleng.2020.115076. |
59 | LIU Y J, DUAN Q L, XU J J, et al. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling[J]. Journal of Energy Storage, 2020, 28: doi: 10.1016/j.est.2019.101185. |
60 | 王颖, 任常兴. 热安全测试装置在灭火气体作用特征研究中的应用[J]. 消防科学与技术, 2017, 36(6): 847-850. |
WANG Y, REN C X. Application of thermal safety test apparatus in the gas fire extinguishing characteristics[J]. Fire Science and Technology, 2017, 36(6): 847-850. | |
61 | 李毅, 于东兴, 张少禹, 等. 典型锂离子电池火灾灭火试验研究[J]. 安全与环境学报, 2015, 15(6): 120-125. |
LI Y, YU D X, ZHANG S Y, et al. On the fire extinguishing tests of typical lithium-ion battery[J]. Journal of Safety and Environment, 2015, 15(6): 120-125. | |
62 | 章柳柳. 基于热气溶胶灭火剂的新能源汽车电池火灾防控研究[D]. 南京: 南京理工大学, 2020. |
ZHANG L L. Research on fire prevention and control of new energy vehicle battery based on hot aerosol fire extinguishing agent[D]. Nanjing: Nanjing University of Science and Technology, 2020. | |
63 | 黄强, 陶风波, 刘洋, 等. 气液灭火剂对磷酸铁锂电池模组灭火能效研究[J]. 中国安全科学学报, 2020, 30(3): 53-59. |
HUANG Q, TAO F B, LIU Y, et al. Study on performance of gas-liquid extinguishing agent for lithium iron phosphate battery modules[J]. China Safety Science Journal, 2020, 30(3): 53-59. | |
64 | YUAN S, CHANG C Y, YAN S S, et al. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire[J]. Journal of Energy Chemistry, 2021, 62: 262-280. |
65 | ZHAO J C, XUE F, FU Y Y, et al. A comparative study on the thermal runaway inhibition of 18650 lithium-ion batteries by different fire extinguishing agents[J]. iScience, 2021, 24(8): doi: 10.1016/j.isci.2021.102854. |
66 | FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. |
67 | BAIRD A R, ARCHIBALD E J, MARR K C, et al. Explosion hazards from lithium-ion battery vent gas[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227257. |
68 | LARSSON F. Lithium-ion battery safety-assessment by abuse testing, fluoride gas emissions and fire propagation[D]. Göteborg: Chalmers University of Technology, 2017. |
69 | ZALOSH R, GANDHI P, BAROWY A. Lithium-ion energy storage battery explosion incidents[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: doi: 10.1016/j.jlp.2021.104560. |
70 | ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103759. |
71 | CHEN M Y, OUYANG D X, WENG J W, et al. Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge[J]. Process Safety and Environmental Protection, 2019, 130: 250-256. |
72 | ZHU M X, ZHU S B, GONG J H, et al. Experimental study on fire and explosion characteristics of power lithium batteries with surfactant water mist[J]. Procedia Engineering, 2018, 211: 1083-1090. |
[1] | 王洋, 卢旭, 张宇新, 刘龙. 动力电池热失控排气策略[J]. 储能科学与技术, 2022, 11(8): 2480-2487. |
[2] | 张青松, 赵洋, 刘添添. 荷电状态和电池排列对锂离子电池热失控传播的影响[J]. 储能科学与技术, 2022, 11(8): 2519-2525. |
[3] | 马勇, 李晓涵, 孙磊, 郭东亮, 杨景刚, 刘建军, 肖鹏, 钱广俊. 基于三维电化学热耦合析锂模型的锂离子电池参数设计[J]. 储能科学与技术, 2022, 11(8): 2600-2611. |
[4] | 唐亮, 尹小波, 吴候福, 刘鹏杰, 王青松. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. |
[5] | 霍丽萍, 栾伟玲, 庄子贤. 锂离子电池储能安全技术的发展态势[J]. 储能科学与技术, 2022, 11(8): 2671-2680. |
[6] | 卓萍, 朱艳丽, 齐创, 王聪杰, 高飞. 锂离子电池组过充燃烧爆炸特性[J]. 储能科学与技术, 2022, 11(8): 2471-2479. |
[7] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[8] | 张越, 孔得朋, 平平. 液冷板抑制锂离子电池组热失控蔓延性能及优化设计[J]. 储能科学与技术, 2022, 11(8): 2432-2441. |
[9] | 徐成善, 鲁博瑞, 张梦启, 王淮斌, 金昌勇, 欧阳明高, 冯旭宁. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
[10] | 韦荣阳, 毛阗, 高晗, 彭建仁, 杨健. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. |
[11] | 赵亚文, 黄彧, 张言茹. 轨道交通动力锂离子电池安全性测试标准分析[J]. 储能科学与技术, 2022, 11(8): 2505-2518. |
[12] | 孙涛, 沈腾腾, 刘昕, 任东生, 刘金海, 郑岳久, 王鲁彦, 卢兰光, 欧阳明高. 滴定-气相色谱技术在锂离子电池析锂定量检测中的应用[J]. 储能科学与技术, 2022, 11(8): 2564-2573. |
[13] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[14] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[15] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||