储能科学与技术 ›› 2022, Vol. 11 ›› Issue (8): 2585-2599.doi: 10.19799/j.cnki.2095-4239.2022.0184

• 电化学储能安全专刊 • 上一篇    下一篇

基于TWP-SVR的锂离子电池健康状态估计

韦荣阳1(), 毛阗2, 高晗1, 彭建仁1, 杨健1,2()   

  1. 1.浙江大学能源工程学院化工机械研究所,浙江 杭州 310013
    2.浙江大学建筑设计研究院有限公司,浙江 杭州 310027
  • 收稿日期:2022-04-01 修回日期:2022-04-07 出版日期:2022-08-05 发布日期:2022-08-03
  • 通讯作者: 杨健 E-mail:22027047@zju.edu.cn;zdhjkz@zju.edu.cn
  • 作者简介:韦荣阳(1997—),男,硕士研究生,研究方向为储能电站健康维护,E-mail:22027047@zju.edu.cn
  • 基金资助:
    水运港一船多能源融合技术及集成应用(示范应用);低能耗可溯源建筑外墙围护结构保温装饰一体化板关键技术研究及示范(2022C01219)

Health state estimation of lithium ion battery based on TWP-SVR

Rongyang WEI1(), Tian MAO2, Han GAO1, Jianren PENG1, Jian YANG1,2()   

  1. 1.Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310013, Zhejiang, China
    2.The Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310027, Zhejiang, China
  • Received:2022-04-01 Revised:2022-04-07 Online:2022-08-05 Published:2022-08-03
  • Contact: Jian YANG E-mail:22027047@zju.edu.cn;zdhjkz@zju.edu.cn

摘要:

健康状态(state of health,SOH)是评估锂离子电池老化程度和剩余使用寿命的重要指标。然而,SOH无法通过直接测量获得,本工作提出了一种基于时间规整图(time warp profile,TWP)提取间接健康特征参数,使用支持向量机回归(vector machine regression,SVR)模型估计SOH的方法。首先,通过TWP将锂离子电池不同循环充放电压曲线转换为相位差异曲线。然后,从相位差异曲线中提取出4个间接健康特征。接着,采用线性核函数的SVR模型估计SOH。最后,以美国航空航天局(National Aeronautics and Space Administration,NASA)、美国保险商实验室公司和普渡大学(Underwriters Laboratories Inc.-Purdue University,UL-PUR)的开源数据集和储能电站实测数据进行验证。其中,储能电站数据实验结果表明,TWP-SVR模型的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)的样本标准差(sample standard deviation,SSD)小于0.0015,四分位距(inter-quartile range,IQR)小于0.0022;平均绝对百分比误差(mean absolute percentage error,MAPE)的SSD和IQR分别为0.0152和0.0220,表明所提TWP-SVR方法保持较高准确性的同时具有良好的稳定性。

关键词: 锂离子电池, 健康状态, 时间规整图, 支持向量机回归

Abstract:

State of Health (SOH) is an important index for evaluating the aging degree and remaining service life of lithium-ion batteries. However, SOH cannot be obtained by direct measurement. This study proposes a method to extract indirect health feature parameters based on time warp profile (TWP) and estimate the SOH using a vector machine regression (SVR) model. First, TWP converts the different cycle charge-discharge voltage curves of a lithium-ion battery into a phase difference curve. Then, four indirect health features are extracted from the phase difference curve. Further, SOH is estimated using the SVR model of the linear kernel function. Finally, it is verified by measured data of energy storage power station and the open-source data sets of NASA, Underwriters Laboratories Inc.-Purdue University (UL-PUR). The experimental results of energy storage power station data show that the sample standard deviation (SSD) of the root mean square error and mean absolute error of the TWP-SVR model is less than 0.0015, and the interquartile range (IQR) is less than 0.0022; the SSD and IQR of mean absolute percentage error are 0.0152 and 0.0220, respectively, indicating that the proposed TWP-SVR method maintains high accuracy and good stability.

Key words: lithium ion battery, status of health, time warp profile, support vector machine regression

中图分类号: