1 |
杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64.
|
|
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64.
|
2 |
苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展[J]. 储能科学与技术, 2019, 8(2): 225-236.
|
|
SU W, ZHONG G B, SHEN J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 225-236.
|
3 |
卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669.
|
|
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669.
|
4 |
徐超, 李立伟, 杨玉新, 等. 基于改进粒子滤波的锂电池SOH预测[J]. 储能科学与技术, 2020, 9(6): 1954-1960.
|
|
XU C, LI L W, YANG Y X, et al. Lithium-ion battery SOH estimation based on improved particle filter[J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960.
|
5 |
ZHENG L F, ZHANG L, ZHU J G, et al. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model[J]. Applied Energy, 2016, 180: 424-434.
|
6 |
HU X S, FENG F, LIU K L, et al. State estimation for advanced battery management: Key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334.
|
7 |
WENG C H, CUI Y J, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44.
|
8 |
BERECIBAR M, GARMENDIA M, GANDIAGA I, et al. State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application[J]. Energy, 2016, 103: 784-796.
|
9 |
MERLA Y, WU B, YUFIT V, et al. Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries[J]. Journal of Power Sources, 2016, 307: 308-319.
|
10 |
HAIDER S N, ZHAO Q C, LI X L. Cluster-based prediction for batteries in data centers[J]. Energies, 2020, 13(5): 1085.
|
11 |
ZHANG Q C, LI X Z, DU Z C, et al. Aging performance characterization and state-of-health assessment of retired lithium-ion battery modules[J]. Journal of Energy Storage, 2021, 40: doi.org/10.1016/j.est.2021.102743.
|
12 |
ZHOU K Q, QIN Y, LAU B P L, et al. Lithium-ion battery state of health estimation based on cycle synchronization using dynamic time warping[C]//IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society. October 13-16, 2021, Toronto, ON, Canada. IEEE, 2021: 1-6.
|
13 |
李海林, 梁叶, 王少春. 时间序列数据挖掘中的动态时间弯曲研究综述[J]. 控制与决策, 2018, 33(8): 1345-1353.
|
|
LI H L, LIANG Y, WANG S C. Review on dynamic time warping in time series data mining[J]. Control and Decision, 2018, 33(8): 1345-1353.
|
14 |
FOLGADO D, BARANDAS M, MATIAS R, et al. Time alignment measurement for time series[J]. Pattern Recognition, 2018, 81: 268-279.
|
15 |
SIOROS G, NYMOEN K. Accurate shape and phase averaging of time series through Dynamic Time Warping[EB/OL]. https://arxiv.org/abs/2109.00978.
|
16 |
CHEN Z, SONG X, XIAO R, et al. State of health estimation for lithium-ion battery based on long short term memory networks[J]. DEStech Transactions on Environment Energy, 2019: doi: 10.12783/dteees/iceee2018/27855.
|
17 |
张少凤, 张清勇, 杨叶森, 等. 基于滑动窗口和LSTM神经网络的锂离子电池建模方法[J]. 储能科学与技术, 2022, 11(1): 228-239.
|
|
ZHANG S F, ZHANG Q Y, YANG Y S, et al. Lithium-ion battery model based on sliding window and long short term memory neural network[J]. Energy Storage Science and Technology, 2022, 11(1): 228-239.
|
18 |
UNGUREAN L, MICEA M V, CÂRSTOIU G. Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks[J]. International Journal of Energy Research, 2020, 44(8): doi:10.1002/er.5413.
|
19 |
QU J T, LIU F, MA Y X, et al. A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178-87191.
|
20 |
王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333.
|
|
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333.
|
21 |
FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101741.
|
22 |
戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649.
|
|
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649.
|
23 |
FENG H L, SHI G L. SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression[J]. Journal of Power Electronics, 2021, 21(12): 1845-1854.
|
24 |
韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438.
|
|
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438.
|
25 |
LI R, LI W R, ZHANG H N, et al. On-line estimation method of lithium-ion battery health status based on PSO-SVM[J]. Frontiers in Energy Research, 2021, 9: doi: 10.3389/fenrg.2021.693249.
|
26 |
B S, K G. Prognostics center of excellence-data repository[EB/OL]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery, 2007/2022-01-29.
|
27 |
JUAREZ-ROBLES D, JEEVARAJAN J A, MUKHERJEE P P. Degradation-safety analytics in lithium-ion cells: Part I. aging under charge/discharge cycling[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abc8c0.
|