1 |
ZHOU L M, ZHANG K, HU Z, et al. Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(6): 1701415.
|
2 |
乔荣涵, 岑官骏, 申晓宇, 等. 锂电池百篇论文点评(2020.12.1—2021.1.31)[J]. 储能科学与技术, 2021, 10(2): 393-407.
|
|
QIAO R H, CEN G J, SHEN X Y, et al. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(2): 393-407.
|
3 |
DENG Q L, FU Y P, ZHU C B, et al. Niobium-based oxides toward advanced electrochemical energy storage: Recent advances and challenges[J]. Small, 2019, 15(32): 1804884.
|
4 |
ARAVINDAN V, SUNDARAMURTHY J, JAIN A, et al. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density[J]. ChemSusChem, 2014, 7(7): 1858-1863.
|
5 |
李泓. 锂离子电池基础科学问题(XV)——总结和展望[J]. 储能科学与技术, 2015, 4(3): 306-318.
|
|
LI H. Fundamental scientific aspects of lithium ion batteries(XV)—Summary and outlook[J]. Energy Storage Science and Technology, 2015, 4(3): 306-318.
|
6 |
LU X, JIAN Z L, FANG Z, et al. Atomic-scale investigation on lithium storage mechanism in TiNb2O7[J]. Energy & Environmental Science, 2011, 4(8): 2638.
|
7 |
尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001.
|
|
YIN J, DONG J L, DING H, et al. Research progress of transition metal oxide anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001.
|
8 |
HAN J T, HUANG Y H, GOODENOUGH J B. New anode framework for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(8): 2027-2029.
|
9 |
SARITHA D, VARADARAJU U V. Studies on electrochemical lithium insertion in isostructural titanium niobate and tantalate phases with shear ReO3 structure[J]. Materials Research Bulletin, 2013, 48(7): 2702-2706.
|
10 |
CAVA R J, MURPHY D W, ZAHURAK S M. Lithium insertion in wadsley-Roth phases based on niobium oxide[J]. Journal of the Electrochemical Society, 1983, 130(12): 2345-2351.
|
11 |
GUO B K, YU X Q, SUN X G, et al. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage[J]. Energy Environ Sci, 2014, 7(7): 2220-2226.
|
12 |
CHOI S H, ALI B, CHOI K S, et al. Reaction kinetics and morphological study of TiNb2O7 synthesized by solid-state reaction[J]. Archives of Metallurgy and Materials, 2017, 62(2): 1051-1056.
|
13 |
INADA R, KUMASAKA R, INABE S, et al. Li+ insertion/extraction properties for TiNb2O7 single particle characterized by a particle-current collector integrated microelectrode[J]. Journal of the Electrochemical Society, 2018, 166(3): A5157-A5162.
|
14 |
ISE K, MORIMOTO S, HARADA Y, et al. Large lithium storage in highly crystalline TiNb2O7 nanoparticles synthesized by a hydrothermal method as anodes for lithium-ion batteries[J]. Solid State Ionics, 2018, 320: 7-15.
|
15 |
TANG K, MU X K, VAN AKEN P A, et al. "nano-pearl-string" TiNb2O7 as anodes for rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3(1): 49-53.
|
16 |
LI H S, SHEN L F, PANG G, et al. TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries[J]. Nanoscale, 2015, 7(2): 619-624.
|
17 |
JO C, KIM Y, HWANG J, et al. Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes[J]. Chemistry of Materials, 2014, 26(11): 3508-3514.
|
18 |
WANG H K, QIAN R F, CHENG Y H, et al. Micro/nanostructured TiNb2O7-related electrode materials for high-performance electrochemical energy storage: Recent advances and future prospects[J]. Journal of Materials Chemistry A, 2020, 8(36): 18425-18463.
|
19 |
LIU M, DONG H C, ZHANG S, et al. Three-dimensional porous TiNb2O7/CNT-KB composite microspheres as lithium-ion battery anode material[J]. ChemElectroChem, 2019, 6(15): 3959-3965.
|
20 |
孙德旺, 蒋必志, 袁涛, 等. 钛铌氧化物用于锂离子电池负极的研究进展[J]. 储能科学与技术, 2021, 10(6): 2127-2143.
|
|
SUN D W, JIANG B Z, YUAN T, et al. Research progress of titanium niobium oxide used as anode of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143.
|
21 |
CHENG Q S, LIANG J W, LIN N, et al. Porous TiNb2O7 nanospheres as ultra long-life and high-power anodes for lithium-ion batteries[J]. Electrochimica Acta, 2015, 176: 456-462.
|
22 |
LIU G Y, ZHAO L F, SUN R X, et al. Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life[J]. Electrochimica Acta, 2018, 259: 20-27.
|
23 |
SONG H, KIM Y T. A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution[J]. Chemical Communications (Cambridge, England), 2015, 51(48): 9849-9852.
|
24 |
LIU K, WANG J A, YANG J, et al. Interstitial and substitutional V5+-doped TiNb2O7 microspheres: A novel doping way to achieve high-performance electrodes[J]. Chemical Engineering Journal, 2021, 407: 127190.
|
25 |
LIN C F, YU S, WU S Q, et al. Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8627-8635.
|
26 |
YANG C, YU S, MA Y, et al. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage[J]. Journal of Power Sources, 2017, 360: 470-479.
|
27 |
YANG C, LIN C F, LIN S W, et al. Cu0.02Ti0.94Nb2.04O7: An advanced anode material for lithium-ion batteries of electric vehicles[J]. Journal of Power Sources, 2016, 328: 336-344.
|
28 |
DENG S J, ZHANG Y, XIE D, et al. Oxygen vacancy modulated Ti2Nb10O29- x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage[J]. Nano Energy, 2019, 58: 355-364.
|
29 |
INADA R, MORI T, KUMASAKA R, et al. Characterization of vacuum-annealed TiNb2O7 as high potential anode material for lithium-ion battery[J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 264-272.
|
30 |
ZHANG Y P, ZHANG M Q, LIU Y Y, et al. Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries[J]. Electrochimica Acta, 2020, 330: 135299.
|
31 |
ZHU W Q, ZOU B B, ZHANG C H, et al. Oxygen-defective TiNb2O7- x nanochains with enlarged lattice spacing for high-rate lithium ion capacitor[J]. Advanced Materials Interfaces, 2020, 7(16): 2000705.
|
32 |
LIU G Y, JIN B, ZHANG R X, et al. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14807-14812.
|
33 |
XIE K Y, WEI W F, YU H R, et al. Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries[J]. RSC Advances, 2016, 6(42): 35746-35750.
|
34 |
YUAN T, SOULE L K, ZHAO B T, et al. Recent advances in titanium niobium oxide anodes for high-power lithium-ion batteries[J]. Energy & Fuels, 2020, 34(11): 13321-13334.
|
35 |
LIN C F, HU L, CHENG C B, et al. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage[J]. Electrochimica Acta, 2018, 260: 65-72.
|
36 |
LI S, CAO X, SCHMIDT C N, et al. TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(11): 4242-4251.
|
37 |
LYU H L, LI J L, WANG T, et al. Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications[J]. ACS Applied Energy Materials, 2020, 3(6): 5657-5665.
|
38 |
ZHU G Z, LI Q, CHE R C. Hollow TiNb2O7@C spheres with superior rate capability and excellent cycle performance as anode material for lithium-ion batteries[J]. Chemistry-A European Journal, 2018, 24(49): 12932-12937.
|
39 |
ZHU G Z, LI Q, ZHAO Y H, et al. Nanoporous TiNb2O7/C composite microspheres with three-dimensional conductive network for long-cycle-life and high-rate-capability anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41258-41264.
|
40 |
TIAN T, LU L L, YIN Y C, et al. Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries[J]. Advanced Functional Materials, 2021, 31(4): 2007419.
|
41 |
LIU G Y, LIU X D, ZHAO Y Y, et al. Synthesis of Ag-coated TiNb2O7 composites with excellent electrochemical properties for lithium-ion battery[J]. Materials Letters, 2017, 197: 38-40.
|
42 |
WANG G Q, WEN Z S, DU L L, et al. Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2017, 367: 106-115.
|
43 |
LUO J, PENG J, ZENG P, et al. Controlled fabrication and performances of single-core/dual-shell hierarchical structure m-TNO@TiC@NC anode composite for lithium-ion batteries[J]. Electrochimica Acta, 2020, 341: 136072.
|
44 |
YIN L H, DE PHAM-CONG, JEON I, et al. Electrochemical performance of vertically grown WS2 layers on TiNb2O7 nanostructures for lithium-ion battery anodes[J]. Chemical Engineering Journal, 2020, 382: 122800.
|