1 |
ZHENG J M, XIAO J, ZHANG J G. The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials[J]. Nano Today, 2016, 11(5): 678-694.
|
2 |
NAYAK P K, ERICKSON E M, SCHIPPER F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201702397.
|
3 |
李雨, 赵慧春, 白莹, 等. 高能量密度层状富锂锰基正极材料的改性研究进展[J]. 储能科学与技术, 2018, 7(3): 394-403.
|
|
LI Y, ZHAO H C, BAI Y, et al. Progress in the modification of lithium-rich manganese-based layered cathode material[J]. Energy Storage Science and Technology, 2018, 7(3): 394-403.
|
4 |
QING R P, SHI J L, XIAO D D, et al. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Advanced Energy Materials, 2016, 6(6): doi: 10.1002/aenm.201501914.
|
5 |
LI Q, LI G S, FU C C, et al. K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10330-10341.
|
6 |
LI N, HE Y S, WANG X P, et al. Incorporation of rubidium cations into Li1.2Mn0.54Co0.13Ni0.13O2 layered oxide cathodes for improved cycling stability[J]. Electrochimica Acta, 2017, 231: 363-370.
|
7 |
SALLARD S, SHEPTYAKOV D, VILLEVIEILLE C. Improved electrochemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li+ by Mg2+[J]. Journal of Power Sources, 2017, 359: 27-36.
|
8 |
LAISA C P, RAMESHA R N, RAMESHA K. Enhanced electrochemical performance of lithium rich layered cathode materials by Ca2+ substitution[J]. Electrochimica Acta, 2017, 256: 10-18.
|
9 |
FENG X, GAO Y R, BEN L B, et al. Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries[J]. Journal of Power Sources, 2016, 317: 74-80.
|
10 |
YI T F, LI Y M, YANG S Y, et al. Improved cycling stability and fast charge-discharge performance of cobalt-free lithium-rich oxides by magnesium-doping[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32349-32359.
|
11 |
SONG B H, ZHOU C F, WANG H L, et al. Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1723-A1730.
|
12 |
AN J, SHI L Y, CHEN G R, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19738-19744.
|
13 |
SUN Z H, XU L Q, DONG C Q, et al. Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration[J]. Journal of Materials Chemistry A, 2019, 7(7): 3375-3383.
|
14 |
LI L, SONG B H, CHANG Y L, et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. Journal of Power Sources, 2015, 283: 162-170.
|
15 |
MING L, ZHANG B, CAO Y, et al. Effect of Nb and F co-doping on Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for high-performance lithium-ion batteries[J]. Frontiers in Chemistry, 2018, 6: 76.
|
16 |
LIU D M, FAN X J, LI Z H, et al. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries[J]. Nano Energy, 2019, 58: 786-796.
|
17 |
LIM S N, SEO J Y, JUNG D S, et al. The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2 composite cathodes doped and co-doped with Mg and F[J]. Journal of Electroanalytical Chemistry, 2015, 740: 88-94.
|
18 |
XUE Z C, QI X Y, LI L Y, et al. Sodium doping to enhance electrochemical performance of overlithiated oxide cathode materials for Li-ion batteries via Li/Na ion-exchange method[J]. ACS Applied Materials & Interfaces, 2018, 10(32): 27141-27149.
|
19 |
DING X, LI Y X, WANG S, et al. Towards improved structural stability and electrochemical properties of a Li-rich material by a strategy of double gradient surface modification[J]. Nano Energy, 2019, 61: 411-419.
|
20 |
DING X, LI Y X, DENG M M, et al. Cesium doping to improve the electrochemical performance of layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode material[J]. Journal of Alloys and Compounds, 2019, 791: 100-108.
|
21 |
YU S S, PENG C, LI Z H, et al. K-doped Li-rich molybdenum-based oxide with improved electrochemical properties for lithium-ion batteries[J]. Arabian Journal for Science and Engineering, 2017, 42(10): 4291-4298.
|
22 |
YANG Z G, GUO X D, XIANG W, et al. K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: Towards the superior rate capability and cycling performance[J]. Journal of Alloys and Compounds, 2017, 699: 358-365.
|
23 |
JIN X, XU Q J, LIU H M, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136: 19-26.
|
24 |
XU H J, DENG S N, CHEN G H. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material[J]. J Mater Chem A, 2014, 2(36): 15015-15021.
|
25 |
YAN W C, XIE Y, JIANG J C, et al. Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4625-4632.
|
26 |
WANG D, HUANG Y, HUO Z Q, et al. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material[J]. Electrochimica Acta, 2013, 107: 461-466.
|
27 |
XIANG Y H, LI J, WU X W, et al. Synthesis and electrochemical characterization of Mg-doped Li-rich Mn-based cathode material[J]. Ceramics International, 2016, 42(7): 8833-8838.
|
28 |
NAYAK P K, GRINBLAT J, LEVI E, et al. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li-and Mn-rich cathodes for Li-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 6142-6152.
|
29 |
GUO H C, XIA Y G, ZHAO H, et al. Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides[J]. Ceramics International, 2017, 43(16): 13845-13852.
|
30 |
LEE S B, CHO S H, HEO J B, et al. Copper-substituted, lithium rich iron phosphate as cathode material for lithium secondary batteries[J]. Journal of Alloys and Compounds, 2009, 488(1): 380-385.
|
31 |
YU T H, LI J L, XU G F, et al. Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material[J]. Solid State Ionics, 2017, 301: 64-71.
|
32 |
HU X, GUO H J, PENG W J, et al. Effects of Nb doping on the performance of 0.5Li2MnO3 ·0.5LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 822: 57-65.
|
33 |
MA Q X, LI R H, ZHENG R J, et al. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen[J]. Journal of Power Sources, 2016, 331: 112-121.
|
34 |
WANG Y Q, YANG Z Z, QIAN Y M, et al. New insights into improving rate performance of lithium-rich cathode material[J]. Advanced Materials, 2015, 27(26): 3915-3920.
|
35 |
LU C, YANG S Q, WU H, et al. Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping[J]. Electrochimica Acta, 2016, 209: 448-455.
|
36 |
ZANG Y, DING C X, WANG X C, et al. Molybdenum-doped lithium-rich layered-structured cathode material Li1.2Ni0.2Mn0.6O2 with high specific capacity and improved rate performance[J]. Electrochimica Acta, 2015, 168: 234-239.
|
37 |
LIU J T, WANG S B, DING Z P, et al. The effect of boron doping on structure and electrochemical performance of lithium-rich layered oxide materials[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18008-18017.
|
38 |
PAN L C, XIA Y G, QIU B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1- xBxO2 as cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 273-280.
|
39 |
SONG J H, KAPYLOU A, CHOI H S, et al. Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping[J]. Journal of Power Sources, 2016, 313: 65-72.
|
40 |
LIU Y, DE NING, ZHENG L R, et al. Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO4 3- with Na3PO4[J]. Journal of Power Sources, 2018, 375: 1-10.
|
41 |
CHEN G R, AN J, MENG Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57: 157-165.
|
42 |
LIU Q, SU X, LEI D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3(11): 936-943.
|
43 |
PENG Z D, MU K C, CAO Y B, et al. Enhanced electrochemical performance of layered Li-rich cathode materials for lithium ion batteries via aluminum and boron dual-doping[J]. Ceramics International, 2019, 45(4): 4184-4192.
|
44 |
LIANG Y W, LI S Y, XIE J, et al. Synthesis and electrochemical characterization of Mg-Al co-doped Li-rich Mn-based cathode materials[J]. New Journal of Chemistry, 2019, 43(30): 12004-12012.
|
45 |
LIU Y Y, LI R R, LI J L, et al. A high-performance Ce and Sn co-doped cathode material with enhanced cycle performance and suppressed voltage decay for lithium ion batteries[J]. Ceramics International, 2019, 45(16): 20780-20787.
|