储能科学与技术 ›› 2022, Vol. 11 ›› Issue (8): 2681-2690.doi: 10.19799/j.cnki.2095-4239.2022.0284

• 电化学储能安全专刊 • 上一篇    

掺杂技术在锰基层状富锂氧化物正极材料中应用进展

陈紫莹(), 丁翔(), 童庆松(), 李俊延, 黄景瑜   

  1. 高效电池组件福建省高校工程研究中心,福建师范大学化学与材料学院,福建 福州 350007
  • 收稿日期:2022-05-25 修回日期:2022-06-20 出版日期:2022-08-05 发布日期:2022-08-03
  • 通讯作者: 丁翔,童庆松 E-mail:2607979319@qq.com;dingx@fjnu.edu.cn;qstong_3503@fjnu.edu.cn
  • 作者简介:陈紫莹(2001—),女,本科生,E-mail:2607979319@qq.com
  • 基金资助:
    国家自然科学基金青年项目(52102216);福建省教育厅青年教师项目(JAT200069)

Application progress of doping technology in Mn-based lithium rich oxide cathode materials

Ziying CHEN(), Xiang DING(), Qingsong TONG(), Junyan LI, Jingyu HUANG   

  1. Fujian Provincial University Engineering Research Center of Efficient Battery Modules, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
  • Received:2022-05-25 Revised:2022-06-20 Online:2022-08-05 Published:2022-08-03
  • Contact: Xiang DING, Qingsong TONG E-mail:2607979319@qq.com;dingx@fjnu.edu.cn;qstong_3503@fjnu.edu.cn

摘要:

锂离子电池(LIBs)凭借能量密度高、能量转换效率高的优势,已成为当今最受欢迎的储能器件。嵌入型正极材料中,锰基层状富锂氧化物xLi2MnO3·(1-x)LiMO2具有最高的放电比容量和高工作电压,但存在结构稳定性差等问题限制其应用在大规模储能领域。本文通过对近期相关文献的探讨,综述了提高富锂正极材料的结构稳定性和电化学性能的策略,回顾了晶格掺杂对锰基层状富锂氧化物正极材料的结构改性设计,分析了锂(Li)位、过渡金属(TM)位和氧(O)位的不同掺杂对其结构和性能的影响,着重介绍了单掺杂和双掺杂两种方法,总结了不同离子在不同位置单掺杂的电化学性能对比,阐述了掺杂后材料的结构变化和影响性能的机制。综合分析表明,晶格掺杂策略对提高循环性能、倍率性能、首次放电容量、首次库仑效率和缓解电压衰减等有显著影响,其中双掺杂的协同效应相比于单掺杂具有更高的结构稳定性和更优异的电化学性能。希望能为富锂相正极材料在下一代高能量密度锂离子电池储能领域的广泛应用提供参考。

关键词: 富锂正极, 离子掺杂, 单掺杂, 双掺杂

Abstract:

Because of their high energy density and high energy conversion efficiency, lithium-ion batteries (LIBs) have become the most popular energy storage device. Among the embedded cathode materials, Mn-based Li-rich oxide xLi2MnO3·(1-x)LiMO2 has the highest discharge specific capacity and high working voltage; however, its poor structural stability limits its application in the field of large-scale energy storage. Based on a review of recent relevant literature, the purpose of this paper is to summarize strategies for improving the structural stability and electrochemical properties of lithium-rich cathode materials, review the structural modification design of manganese-based lithium-rich oxide cathode materials by lattice doping and analyze the effects of different doping lattice sites: lithium (Li), transition metal (TM), and oxygen (O) on their structures and properties, including single-doping and double-doping. We compare the electrochemical properties of single doping at various positions and describe structural changes in doped materials as well as the mechanism of affecting properties. According to the comprehensive analysis, the lattice-doping strategy has a significant impact on the improvement of cycle performance, rate capability, first discharge capacity, first coulomb efficiency, and voltage attenuation mitigation. Double doping has greater structural stability and better electrochemical properties than single doping. It is hoped that it will serve as an experimental foundation for the widespread use of Li-rich cathode materials in the energy storage field of next-generation high energy density LIBs.

Key words: Li-rich cathode, lattice doping, single-doping, double-doping

中图分类号: