储能科学与技术 ›› 2016, Vol. 5 ›› Issue (5): 668-677.doi: 10.12028/j.issn.2095-4239.2016.0031

• 特约评述 • 上一篇    下一篇

固态锂二次电池关键材料中的空间电荷层效应:原理和展望

陈  骋1,凌仕刚2,郭向欣1,李  泓2   

  1. 1中国科学院上海硅酸盐研究所,上海 200050;2 中国科学院物理研究所,北京 100190
  • 收稿日期:2016-06-24 修回日期:2016-07-06 出版日期:2016-09-01 发布日期:2016-09-01
  • 通讯作者: 郭向欣,研究员,研究方向为固态离子导电储能材料与器件,E-mail:xxguo@mail.sic.ac.cn。
  • 作者简介:陈骋(1990—),男,博士研究生,研究方向为固态薄膜电池,E-mail:chencheng@student.sic.ac.cn;
  • 基金资助:
    国家自然基金(51532002)及国家重点基础研究发展计划(973)项目(2014CB921004)。

Space charge layer effect in rechargeable solid state lithium batteries: principle and perspective#br#

CHEN Cheng1, LING Shigang2, GUO Xiangxin1, LI Hong2   

  1. 1Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-06-24 Revised:2016-07-06 Online:2016-09-01 Published:2016-09-01

摘要: 空间电荷层效应源于两相界面电化学势平衡的热力学要求,最初被用于解释复合离子导体中离子电导率的显著增大现象,后来在更多的体系中得到应用和发展,并且不但可以定性而且可以定量地解释多种离子的界面输运行为。特别是在纳米尺寸体系中,体相效应大大减小,界面空间电荷层效应更为显著的增加,利用这一效应不仅可以调控电导的大小,还可以设计构筑具有奇异特性的人工导体。目前,固态锂二次电池的研究受到关注,其中电解质/电极界面或复合电极内部界面可能存在的空间电荷层效应也引起越来越多的重视。本文首先基于两相界面的缺陷化学,从热力学基础角度讨论了空间电荷层产生的原理,评述了典型导电体系中存在的空间电荷层效应及其对宏观性能的影响。在此基础上,探讨了固态锂二次电池中的空间电荷层效应、有关的表征方法,以及利用空间电荷层提高电池性能的可能。

关键词: 空间电荷层, 缺陷化学, 界面电阻, 二次固态锂电池

Abstract: The space charge layer (SCL) effects result from the requirement of thermodynamic equilibrium at the interface, which were firstly used to account for the abnormal conductivity enhancement in composite conductors. They were lateron developed to qualitatively and quantitatively explain the interfacial transport behaviors in many other systems. Particularly, the SCL effects could be utilized to control the conductivity and construct artificial conductors in nanometer-scale systems. Rechargeable solid state lithium batteries have attracted much attention, especially the SCL effects at the interfaces between the electrolyte and the electrode or inside the composite electrode. In this paper, the principle of SCL based on defect chemistry near the two-phase boundary from the thermodynamical point of view is firstly presented. The SCL effects in several typical conducting systems as well as the influence on properties are reviewed. On this basis, the SCL effects in rechargeable solid state lithium batteries reported so far are reviewed. Characterization techniques of the SCL effects are introduced. Finally, the possibility of utilizing SCL effects to improve battery performance is addressed.

Key words: space charge layer, defect chemistry, interfacial resistance, rechargeable solid state lithium battery