[1] VINCENT C A, SCROSATI B, LAZZARI M, et al. Modern batteries:An introduction to electrochemical power sources[M]. Edward Arnold, 1984.
[2] REDDY T B, LINDEN D. Linden's handbook of batteries[M]. USA:McGraw-Hill Education, 2010.
[3] ELVERS B. Ullmann's energy, 3 volume set:resources, processes, products[M]. Wiley VCH, 2015.
[4] BUCHMAN I. Batteries in a portable world:A handbook on rechargeable batteries for non-engineers[M]. Cadex Electronics Inc., 2001.
[5] 陶占良, 陈军. 铅碳电池储能技术[J]. 储能科学与技术, 2015, 4(6):546-555. TAO Z L, CHEN J. Lead carbon ultrabatteries for energy storage[J]. Energy Storage Science and Technology, 2015, 4(6):546-555.
[6] 柳颖. 几种新技术铅蓄电池的研究进展[J]. 通信电源技术, 2016, 33(5):103-104. LIU Y. Research Progress of several new technologies lead storage batteries[J]. Telecom Power Technology, 2016, 33(5):103-104.
[7] 李现红. 双极性铅酸蓄电池发展概述[J]. 蓄电池, 2012, 49(6):269-272. LI X H. Overview of the development of bipolar lead-acid batteries[J]. Chinese Labat Man, 2012, 49(6):269-272.
[8] 石沫, 朱溢慧, 章小琴, 等. 双极性铅酸蓄电池的研究及进展概述[J]. 蓄电池, 2016, 53(3):146-150. SHI M, ZHU Y H, ZHANG X Q, et al. Updated research and progress of bipolar lead-acid battery[J]. Chinese Labat Man, 2016, 53(3):146-150.
[9] 郝科涛, 吕晓军, 贾明, 等. 铅酸电池负极板栅Al/Pb复合材料的制备及性能[J]. 中国有色金属学报, 2013, 23(6):1591-1597. HAO K T, LV X J, JIA M, et al. Preparation and performance of Al/Pb composite material for lead-acid battery negative grid[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(6):1591-1597.
[10] 陈冬, 程杰, 潘军青, 等. 碳作为铅酸电池集流体的研究进展[J]. 现代化工, 2011, 31(11):25-28. CHEN D, CHENG J, PAN J Q, et al. Progress in carbon as active materials carrier and current collector for lead acid batteries[J]. Modern Chemical Industry, 2011, 31(11):25-28.
[11] 李桂发, 郭志刚, 刘玉, 等. 胶体电解液在铅酸动力电池的应用研究[J]. 蓄电池, 2017, 54(1):15-28. LI G F, GUO Z G, LIU Y, et al. Study on the application of gelled electrolyte in power batteries[J]. Chinese Labat Man, 2017, 54(1):15-28.
[12] 边伟, 鲁植雄, 杨柳. 新型车载全胶体材料铅酸蓄电池开发及性能[J]. 电源技术, 2017, 41(4):577-578. BIAN W, LU Z X, YANG L. Development and performance of new type of onboard all colloid material lead-acid battery[J]. Chinese Journal of Power Sources, 2017, 41(4):577-578.
[13] 陈军, 陶占良, 苟兴龙. 化学电源:原理、技术与应用[M]. 北京:化学工业出版社, 2006. CHEN J, TAO Z L, GOU X L. Chemical power sources:Principle technology&application[M]. Beijing:Chemical Industry Press, 2006.
[14] WILLEMS J J G, BUSCHOW K H J. From permanent magnets to rechargeable hydride electrodes[J]. Journal of the Less Common Metals, 1987, 129(87):13-30.
[15] BRANDT K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994, 69(3/4):173-183.
[16] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10):4271-4302.
[17] NAGAURA T, TOZAWA K. Lithium ion rechargeable battery[J]. Progress in Batteries and Solar Cells, 1990, 9:209-217.
[18] KAMALI A R, FRAY D J. Tin-based materials as advanced anode materials for lithium ion batteries:A review[J]. Reviews on Advanced Materials Science, 2011, 27(1):14-24.
[19] 赵书平, 王婵, 杨正龙, 等. 锂离子电池负极材料二氧化锡的研究进展[J]. 材料导报, 2016, 30(1):136-142.
[20] ZHAO S P, WANG C, YANG Z L, et al. Research progress of Tin dioxide as anode materials for lithium ion batteries[J]. Materials Review, 2016, 30(1):136-142.
[21] ZHANG L, LIU X, ZHAO Q, et al. Si-containing precursors for Si-based anode materials of Li-ion batteries:A review[J]. Energy Storage Materials, 2016, 4:92-102.
[22] CHEN T, WU J, ZHANG Q, et al. Recent advancement of SiOx, based anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 363:126-144.
[23] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries:A Review[J]. Chemical Reviews, 2017, 117(15):10403-10473.
[24] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3):194-206.
[25] 王伟东, 仇卫华, 丁倩倩. 锂离子电池三元材料:工艺技术及生产应用[M]. 北京:化学工业出版社, 2015. WANG W D, QIU W H, DING Q Q. Nickle cobalt manganese based cathode materials for Li-ion batteries technology production and application[M]. Beijing:Chemical Industry Press, 2015.
[26] GAO S, YANG T, ZHANG H, et al. Improved electrochemical performance and thermal stability of Li-rich material Li1.2(Ni0.25Co0.25Mn0.5)0.8O2 through a novel core-shelled structure design[J]. Journal of Alloys & Compounds, 2017, 729:695-702.
[27] LIU Y, LU Z, DENG C, et al. Preparation and electrochemical properties of high-voltage spinel LiNi0.5Mn1.5O4 synthesized by using different manganese sources[J]. ChemElectroChem, 2017, 4(5):1205-1213.
[28] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(3):doi:http://doi.org/10.1038/natrevmats.2016.103.
[29] SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386.
[30] XING L B, XI K, LI Q, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 303:22-28.
[31] 黄祯, 冯国星. 中国科学院高能量密度锂电池研究进展快报[J]. 储能科学与技术, 2016, 5(2):172-176. HUANG Z, FENG G X. Progress on high energy density lithium batteries by CAS battery research group[J]. Energy Storage Science and Technology, 2016, 5(2):172-176.
[32] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017:doi:10.1002/aenm.201700260.
[33] PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17):5237-5288.
[34] PERRY M L, FULLER T F. A historical perspective of fuel cell technology in the 20th century[J]. Journal of the Electrochemical Society, 2002, 149(7):S59-S67.
[35] 倪萌, 梁国熙. 碱性燃料电池研究进展[J]. 电池, 2004, 34(5):364-365. NI M, LIANG G X. Development of alkaline fuel cells[J]. Battery Bimonthly, 2004, 34(5):364-365.
[36] 肖钢. 燃料电池技术[M]. 北京:电子工业出版社, 2009.
[37] AKHTAR N, AKHTAR W. Prospects, challenges, and latest developments in lithium-air batteries[J]. International Journal of Energy Research, 2015, 39(3):303-316.
[38] LITTAUER E L, TSAI K C. Anodic behavior of lithium in aqueous electrolytes I. Transient passivation[J]. Journal of the Electrochemical Society, 1976, 123(6):771-776.
[39] 赵玉振, 胡承亮, 罗志虹, 等. 锂空气电池性能改善方法的研究进展[J]. 材料导报:纳米与新材料专辑, 2017(S1):215-222. ZHAO Y Z, HU C L, LUO Z H, et al. Research progress on the performance improvement of Li-air batteries[J]. Materials Review, 2017(S1):215-222.
[40] 罗志虹, 赵玉振, 郭珺, 等. 正极材料与催化剂对锂空气电池性能的影响及相关研究进展[J]. 材料导报, 2015, 29(7):20-26. LUO Z H, ZHAO Y Z, GUO J, et al. Effects of positive elecrtode materials and catalysts on performance of Li-air battery and relative research progress[J]. Materials Review, 2015, 29(7):20-26.
[41] WANG J, LI Y, SUN X. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries[J]. Nano Energy, 2013, 2(4):443-467.
[42] KRAYTSBERG A, EIN-ELI Y. The impact of nano-scaled materials on advanced metal-air battery systems[J]. Nano Energy, 2013, 2(4):468-480.
[43] WANG Y, ZHOU H. A lithium-air battery with a potential to continuously reduce O2, from air for delivering energy[J]. Journal of Power Sources, 2010, 195(1):358-361.
[44] YI J, GUO S, HE P, et al. Status and prospects of polymer electrolytes for solid-state Li-O2(air) batteries[J]. Energy & Environmental Science, 2017, 10(4):860-884.
[45] BITO A. Overview of the sodium-sulfur battery for the IEEE stationary battery committee[C]//IEEE Power Engineering Society General Meeting. San Francisco:2005.
[46] NOURAI A. Installation of the first distributed energy storage system (DESS) at American Electric Power (AEP)[R]. Sandia report, June 2007.
[47] 邱广玮, 刘平, 曾乐才, 等. 钠硫电池发展现状[J]. 材料导报, 2011, 25(21):34-37. QIU G W, LIU P, ZENG L C, et al. Development of the sodium-sulfur battery[J]. Materials Review, 2011, 25(21):34-37.
[48] SKYLLAS-KAZACOS M, CHAKRABARTI M H, HAJIMOLANA S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, 158(8):R55-R79.
[49] SKYLLAS-KAZACOS M, KAZACOS G, Poon G, et al. Recent advances with UNSW vanadium-based redox flow batteries[J]. International Journal of Energy Research, 2010, 34(2):182-189.
[50] 王晓丽, 张宇, 李颖, 等. 全钒液流电池技术与产业发展状况[J]. 储能科学与技术, 2015, 4(5):458-466. WANG X L, ZHANG Y, LI Y, et al. Vanadium flow battery technology and its industrial status[J]. Energy Storage Science and Technology, 2015, 4(5):458-466.
[51] 刘宗浩, 张华民, 高素军, 等. 风场配套用全球最大全钒液流电池储能系统[J]. 储能科学与技术, 2014, 3(1):71-77. LIU Z H, ZHANG H M, GAO S J, et al. The world's largest all-vanadium redox flow battery energy storage system for a wind farm[J]. Energy Storage Science and Technology, 2014, 3(1):71-77.
[52] SOUENTIE S, AMR I, ALSUHAIBANI A, et al. Temperature, charging current and state of charge effects on iron-vanadium flow batteries operation[J]. Applied Energy, 2017, 206:568-576.
[53] 胡林童, 郭凯, 李会巧, 等. 新型锂-液流电池[J]. 科学通报, 2016(3):350-363.
[54] NARAYANAN A, WIJNPERLÉ D, MUGELE F, et al. Influence of electrochemical cycling on the rheo-impedance of anolytes for Li-based semi solid flow batteries[J]. Electrochimica Acta, 2017, 251:388-395.
[55] SANADA K, HOSOKAWA M. Electric double-layer capacitor super capacitor[J]. NEC Research & Development, 1979, 55:21-28.
[56] 刘海晶, 夏永姚. 混合型超级电容器的研究进展[J]. 化学进展, 2011, 23(2):595-604. LIU H J, XIA Y Y. Research progress of hybrid supercapacitor[J]. Progress in Chemistry, 2011, 23(2):595-604.
[57] 赵雪, 邱平达, 姜海静, 等. 超级电容器电极材料研究最新进展[J]. 电子元件与材料, 2015(1):44-48. ZHAO X, QIU P D, JIANG H J, et al. Latest research progress of electrode materials for supercapacitor[J]. Electronic Components and Materials, 2015, 1:44-48.
[58] PISTOIA G. Battery operated devices and systems:From portable electronics to industrial products[M]. Elsevier, 2008.
[59] 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4):443-453. WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4):443-453.
[60] PLACKE T, KLOEPSCH R, DÜHNEN S, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies:the odyssey for high energy density[J]. Journal of Solid State Electrochemistry, 2017, 21(7):1939-1964.
[61] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11):7148-7154.
[62] KIM C S, GUERFI A, HOVINGTON P, et al. Importance of open pore structures with mechanical integrity in designing the cathode electrode for lithium-sulfur batteries[J]. Journal of Power Sources, 2013, 241(6):554-559.
[63] XING L B, XI K, LI Q, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 303:22-28.
[64] HU X, WANG J, LI Z, et al. MCNTs@MnO2 nanocomposite cathode integrated with soluble O2-carrier Co-salen in electrolyte for high-performance Li-air batteries[J]. Nano Letters, 2017, 17(3):2073-2078.
[65] VISCO S J, NIMON V Y, PETROV A, et al. Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes[J]. Journal of Solid State Electrochemistry, 2014, 18(5):1443-1456.
[66] LI Z, SHAO M, YANG Q, et al. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis[J]. Nano Energy, 2017, 37:98-107.
[67] 贾传坤, 王庆. 高能量密度液流电池的研究进展[J]. 储能科学与技术, 2015, 4(5):467-475. JIA C K, WANG Q. The development of high energy density redox flow batteries[J]. Energy Storage Science and Technology, 2015, 4(5):467-475.
[68] 胡娟, 杨水丽, 侯朝勇, 等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术, 2015, 39(4):879-885. HU J, YANG S L, HOU C Y, et al. Present condition analysis on typical demonstration application of large-scale energy storage technology and its enlightenment[J]. Power System Technology, 2015, 39(4):879-885.
[69] 许守平, 李相俊, 惠东. 大规模储能系统发展现状及示范应用[J]. 电源技术, 2015, 39(1):217-220. XU S P, LI X J HUI D. Survey of development and demonstration application of large-scale energy storage[J]. Chinese Journal of Power Sources, 2015, 39(1):217-220.
[70] DOE global energy storage database projects[EB/OL].[2017-8-16]. http://www.energystorageexchange.org/projects. |