[1] 田书, 程浩忠, 曾平良, 等. 基于调频层面的风电弃风分析[J]. 电工技术学报, 2015, 30(7):18-26. TIAN Shuxin, CHENG Haozhong, ZENG Pingliang, et al. Analysis on wind power curtailment at frequency adjustment level[J]. Transactions of China Electrotechnical Society, 2015, 30(7):18-26.
[2] 陈永翀. 储能电池技术多元化发展探讨[J]. 中华新能源, 2018:36-41. CHEN Yongchong. Discussion on diversified development of energy storage battery technology[J]. China New Energy Review, 2018:36-41.
[3] 李欣然, 黄际元, 陈远扬, 等. 大规模储能电源参与电网调频研究综述[J]. 电力系统保护与控制, 2016, 44(7):145-153. LI Xinran, HUANG Jiyuan, CHEN Yuanyang, et al. Review on large-scale involvement of energy storage in power grid fast frequency regulation[J]. Power System Protection and Control, 2016, 44(7):145-153.
[4] 宋永, 黄继军, 黄际元, 等. 储能电池参与电网快速调频的场景分析[J]. 电气应用, 2017, 36(11):52-56. SONG Yong, HUANG Jijun, HUANG Jiyuan, et al. Scene analysis of energy storage battery participating in rapid frequency modulation of power grid[J]. Electrotechnical Application, 2017, 36(11):52-56.
[5] 杨水丽, 李建林, 李蓓, 等. 电池储能系统参与电网调频的优势分析[J]. 电网与清洁能源, 2013, 29(2):43-47. YANG Shuili, LI Jianlin, LI Bei, et al. Advantages of battery energy storage system for frequency regulation[J]. Advances of Power System & Hydroelectric Engineering, 2013, 29(2):43-47.
[6] 孙峰, 曾辉, 邵宝珠, 等. 澳大利亚100MW储能运行分析及对中国的启示[J]. 电力系统自动化, 2018, 42:1-7. SUN Feng, ZENG Hui, SHAO Baozhu, et al. Analysis of australian 100MW storage operation and its enlightenment to China[J]. Automation of Electric Power Systems, 2018, 42:1-7.
[7] 孙冰莹, 杨水丽, 刘宗歧, 等. 国内外兆瓦级储能调频示范应用现状分析与启示[J]. 电力系统自动化, 2017, 41(11):8-16. SUN Bingying, YANG Shuili, LIU Zongqi, et al. Analysis on present application of megawatt-scale energy storage in frequency regulation and its enlightenment[J]. Automation of Electric Power Systems, 2017, 41(11):8-16.
[8] 陈永翀. 中国储能产业与技术发展的问题与建议[J]. 高科技与产业化, 2016, 4:42-45. CHEN Yongchong. Issues and suggestions on China's energy storage industry and technology development[J]. High-Technology & Commercialization, 2016, 4:42-45.
[9] 陈永翀. 发展储能电池技术首先要厘清基本概念[J]. 中国战略新兴产业, 2017, 23:96-96. CHEN Yongchong. The development of energy storage battery technology must first clarify the basic concepts[J]. China Strategic Emerging Industry, 2017, 23:96-96.
[10] 隋欣, 张晓虎, 陈永翀, 等. 基于等效电路模型的串联电池组不一致分布特征仿真分析[J]. 电工电能新技术, 2018(9):24-32. SUI Xin, ZHANG Xiaohu, CHEN Yongchong, et al. Simulation analysis of the inconsistency distribution characteristics of series battery based on equivalent circuit model)[J]. Advanced Technology of Electrical Engineering and Energy, 2018(9):24-32.
[11] 范刘洋, 汪可友, 张宝群, 等. 考虑电池组不一致性的储能系统建模及仿真[J]. 电力系统自动化, 2016, 3:110-115. FAN Liuyang, WANG Keyou, ZHANG Baoqun, et al. Modeling and simulation of battery energy storage system considering intrinsic inconsistency[J]. Automation of Electric Power Systems, 2016, 3:110-115.
[12] 牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用[J]. 热力发电, 2018, 47(5):29-34. MOU Chunhua, WU Pengyue, SUN Ganghu, et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system[J]. Thermal Power Generation, 2018, 47(5):29-34.
[13] 林莉, 金鑫, 朱丽云, 等. 考虑充放电能量不均衡的双电池系统状态评估与控制策略[J]. 电力系统自动化, 2018, 42(10):128-134. LIN Li, JIN Xin, ZHU Liyun, et al. State evaluation and control strategy of dual-battery system considering unbalance of charging and discharging energy)[J]. Automation of Electric Power Systems, 2018, 42(10):128-134.
[14] 马泽宇, 姜久春, 文锋, 等. 用于储能系统的梯次利用锂电池组均衡策略设计[J]. 电力系统自动化, 2014, 38(3):106-111. MA Zeyu, JIANG Jiuchun, WEN Feng, et al. Design of equilibrium strategy of echelon use Li-ion battery pack for energy storage system[J]. Automation of Electric Power Systems, 2014, 38(3):106-111.
[15] 王震坡, 孙逢春, 林程, 等. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7):577-580. WANG Zhenpo, SUN Fengchun, LIN Cheng, et al. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7):577-580.
[16] UNO M, TANAKA K. Influence of high-frequency charge-discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4):1505-1515.
[17] 郑岳久.车用锂离子动力电池组的一致性研究[D].北京:清华大学, 2014. ZHENG Yuejiu. Study on cell variations of Lithium-ion power battery packs in electric vehicles[D]. Beijing:Tsinghua University, 2014.
[18] 杨帆. 锂离子电池组不一致性及其弥补措施[J]. 汽车电器, 2014(5):37-40. YANG Fan. Inconformity of Li battery pack and remedial measures[J]. Auto Electric Parts, 2014(5):37-40.
[19] 罗雨, 王耀玲, 李丽华, 等. 锂电池制片工艺对电池一致性的影响[J]. 电源技术, 2013, 37(10):1757-1759. LUO Yu, WANG Yaoling, LI Lihua, et al. Influence of preparation techniques upon uniformity of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(10):1757-1759.
[20] 罗宇. 动力锂离子电池制备工艺对一致性影响研究[D]. 长沙:湖南大学, 2012. LUO Yu. Study on the influence of the preparation process upon the uniformity of the power lithium-ion batteries[D].Changsha:Hunan University, 2012.
[21] 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2):194-202. WANG Li, XIE Leqiong, ZHANG Gan, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2):194-202.
[22] 李娜, 白恺, 董建明, 等. 梯次利用电池储能系统一致性维护方法研究[J]. 中外能源, 2017, 22(4):89-96. LI Na, BAI Kai, DONG Jianming, et al. Research on consistency maintenance method for echelon use battery energy storage system[J]. Sino-Global Energy, 2017, 22(4):89-96.
[23] 李娜, 白恺, 陈豪, 等. 磷酸铁锂电池均衡技术综述[J]. 华北电力技术, 2012, 2:60-65. LI Na, BAI Kai, CHEN Hao, et al. Summary of equalization for LiFePO4 Li-ion batteries[J]. North China Electric Power, 2012, 2:60-65.
[24] KIM C H, KIM M Y, PARK H S, et al. A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV[J]. IEEE Transactions on Power Electronics, 2012, 27(8):3764-3774.
[25] DAOWD M, OMAR N, BOSSCHE P V D, et al. Passive and active battery balancing comparison based on MATLAB simulation//Vehicle Power & Propulsion Conference[C]//Chicago, USA:Institute of Electrical and Electronics Engineers(IEEE), 2011:1-7.
[26] GALLARDO L J, ROMERO C E, MILANES M, et al. Battery equalization active methods[J]. Journal of Power Sources, 2014, 246(3):934-949.
[27] 孙庆. 基于模糊综合评价体系的动力电池组均衡方法研究[D]. 合肥:合肥工业大学, 2017. SUN Qing. Research on equilibrium method of power battery based on fuzzy comprehensive evaluation system[D]. Hefei:Hefei University of Technology, 2017.
[28] PHUNG T H, CREBIER J, CHUREAU A, et al. Optimized structure for next-to-next balancing of series-connected lithium-ion cells[J]. IEEE Transactions on Power Electronics Pe, 2013, 29(9):4603-4613.
[29] PARK S H, KIM T S, PARK J S, et al. A new buck-boost type battery equalizer[C]//2009 IEEE Applied Power Electronics Conference & Exposition, Washington DC, USA:Institute of Electrical and Electronics Engineers(IEEE), 2009:1246-1250.
[30] SHANG Y L, ZHANG C, CUI N, et al. A cell-to-cell battery equalizer with zero-current switching and zero-voltage gap based on quasiresonant LC converter and boost converter[J]. IEEE Transactions on Power Electronics, 2015, 30(7):3731-3747.
[31] MA Y, ZHU G R, QIU S, et al. Lithium-ion battery cells voltage equalization using optimized circuit parameters and control Strategy[C]//2013 IEEE Vehicle Power and Propulsion Conference(VPPC 2013). Beijing, China:Institute of Electrical and Electronics Engineers(IEEE), 2013:119-203
[32] 李锐华, 李冀, 胡波, 等. 基于Buck-Boost变换器的磷酸铁锂电池串联电压均衡优化策略[J]. 电气技术, 2018, 19(3):1-7. LI Yuehua, LI Ji, HU Bo, et al. Voltage equalization optimization strategy for LiFePO4 series-connected battery packs based on BuckBoost converter[J]. Electrical Engineering, 2018, 19(3):1-7.
[33] 何少佳. 磷酸铁锂动力电池组主动均衡关键问题研究[D]. 武汉:武汉理工大学, 2015. HE Shaojia. Research on the key issues about active equalization system of LiFeO4 power battery pack[D]. Wuhan:Wuhan University of Technology, 2015.
[34] SHANG Y L, ZHANG C, CUI N, et al. A crossed pack-to-cell equalizer based on quasi-resonant LC converter with adaptive fuzzy logic equalization control for series-connected lithium-ion battery strings[C]//Applied Power Electronics Conference & Exposition. Charlotte, North Carolina, USA:Institute of Electrical and Electronics Engineers(IEEE), 2015:1685-1692.
[35] 刘红锐, 杜春峰, 陈仕龙, 等. 一种基于Cuk斩波电路的双向双层桥臂的蓄电池组均衡器的研究[J]. 电源学报, 2017, 15(2):142-147. LIU Hongrui, DU Chunfeng, CHEN Shilong, et al. Research on bidirectional battery pack equalizer with double deck based on Cuk chopper circuit[J]. Journal of Power Supply, 2017, 15(2):142-147.
[36] LI Z, SHANG Y L, DUAN B, et al. A pack-to-cell-to-pack battery equalizer with soft-switching based on buck-boost and bidirectional LC resonant converters[C]//Energy Conversion Congress & Exposition//Cincinnati, United States:Institute of Electrical and Electronics Engineers(IEEE), 2017:1-7.
[37] ZHOU Z, SHANG Y L, DUAN B, et al. An any-cell(s)-to-anycell(s)equalizer based on bidirectional inductor converters for series connected battery string[C]//Industrial Electronics & Applications. Hefei, China:Institute of Electrical and Electronics Engineers(IEEE), 2016:2511-2515.
[38] CUI N, SHANG Y, ZHANG Q, et al. A direct multi-cells-to-multicells equalizer based on LC matrix converter for series-connected battery strings[C]//2018 IEEE Applied Power Electronics Conference and Exposition(APEC 2018). San Antonio, TX, USA:Institute of Electrical and Electronics Engineers(IEEE), 2018:680-683.
[39] DENG F, CHEN Z. A control method for voltage balancing in modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2013, 29(1):66-76.
[40] AKAGI H, HATADA T. Voltage balancing control for a three-level diode-clamped converter in a medium-voltage transformerless hybrid active flter[J]. IEEE Transactions on Power Electronics, 2009, 24(3):571-579.
[41] UNO M, TANAKA K. Single-switch cell voltage equalizer using multistacked buck-boost converters operating in discontinuous conduction mode for series-connected energy storage cells[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8):3635-3645.
[42] 李索宇. 动力锂电池组均衡技术研究[D]. 北京:北京交通大学, 2011. LI Suoyu. Research on consistency maintenance method for echelon use battery energy storage system[D]. Beijing:Beijing Jiaotong University, 2011.
[43] KIM J, SHIN J, CHUN C, et al. Stable confguration of a Li-ion series battery pack based on a screening process for improved voltage/SOC balancing[J]. IEEE Transactions on Power Electronics, 2011, 27(1):411-424.
[44] ZHENG Y, OUYANG M, LU L, et al. On-line equalization for lithiumion battery packs based on charging cell voltages:Part 1. Equalization based on remaining charging capacity estimation[J]. Journal of Power Sources, 2014, 247(2):676-686.
[45] EINHORN M, GUERLSCHMID W, BLOCHBERGER T, et al. A current equalization method for serially connected battery cells using a single power converter for each cell[J]. IEEE Transactions on Vehicular Technology, 2011, 60(9):4227-4237.
[46] 王立业, 王丽芳, 刘伟龙. 基于容量差的电动汽车主动均衡控制策略研究[J]. 电工电能新技术, 2017, 36(11):44-50. WANG Liye, WANG Lifang, LIU Weilong. Research on active balance control strategy of electric vehicle based on capacity difference[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11):44-50.
[47] 隋欣, 陈永翀, 张晓虎, 等. 基于改进滑模观测器的锂离子电池荷电状态估计方法[J]. 电工电能新技术, 2018, 37(12):73-82. SUI Xin, CHEN Yongchong, ZHANG Xiaohu, et al. Improved sliding mode observer for state of charge estimation of lithium-ion battery[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(12):73-82.
[48] 杨海学, 张继业, 张晗. 基于改进Sage-Husa的自适应无迹卡尔曼滤波的锂离子电池SOC估计[J]. 电工电能新技术, 2016, 35(1):30-35. YANG Haixue, ZHANG Jiye, ZHANG Han. States of charge estimation of lithium-ion battery based on improved Sage-Husa adaptive unscented Kalman filters)[J].Advanced Technology of Electrical Engineering and Energy, 2016, 35(1):30-35.
[49] 荣雅君, 杨伟, 牛欢, 等. 基于BP-EKF算法的电动汽车电池管理系统SOC精准估计[J]. 电工电能新技术, 2015, 34(9):22-28. RONG Yajun, YANG Wei, NIU Huan, et al. Accurate estimation of SOC value of electric vehicle battery based on EKF algorithm optimized by BP neural network)[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(9):22-28.
[50] LI W, KANG L, GUO X, et al. Multi-objective predictive balancing control of battery packs based on predictive current[J]. Energies, 2016, 9(4):doi:https://doi.org/10.3390/en9040298. |