储能科学与技术 ›› 2018, Vol. 7 ›› Issue (S1): 1-7.doi: 10.12028/j.issn.2095-4239.2017.0063
姚煜, 李克锋, 谢巧, 张晓霞
收稿日期:
2017-05-18
修回日期:
2018-03-23
出版日期:
2018-12-05
发布日期:
2018-12-05
通讯作者:
李克锋,高级工程师,研究方向为电化学,E-mail:53006095@qq.com。
作者简介:
姚煜(1977-),男,高级工程师,研究方向为化学电源,E-mail:13761412926@139.com
YAO Yu, LI Kefeng, XIE Qiao, ZHANG Xiaoxia
Received:
2017-05-18
Revised:
2018-03-23
Online:
2018-12-05
Published:
2018-12-05
摘要: 电动汽车行业迅速发展,高倍率的锂离子电池是其关键,因此需要不断开发适用高倍率充放电的电池材料。本文简要综述了高倍率锂离子电池正极材料、负极材料、隔膜和电解液方面的研究进展,并对高倍率锂离子电池材料发展进行了展望。
中图分类号:
姚煜, 李克锋, 谢巧, 张晓霞. 高倍率锂离子电池材料研究进展[J]. 储能科学与技术, 2018, 7(S1): 1-7.
YAO Yu, LI Kefeng, XIE Qiao, ZHANG Xiaoxia. Research progress of high rate Li-ion battery materials[J]. Energy Storage Science and Technology, 2018, 7(S1): 1-7.
[1] NISHI Y. Li-ion secondary batteries; past 10 years and the future[J]. J. Power Sources, 2001, 100(1):101-106. [2] CHEN H L, QIU X P, ZHU W T, et al. Synthesis and high rate proper-ties of nanoparticles lithium cobalt oxides as the cathode material for lithium-ion battery[J]. Electrochem. Commun., 2002, 4(6):488-491. [3] XIA Yongyao, HIDESHIMA Yasufumi, KUMADE Naoki, et al. Studies on Li-Mn-O spinel system (obtained from meltimpregnation method) as a cathode for 4V lithium batteries:Part V.Enhancement of the elevated temperature performance of Li/LiMn2O4 cell[J]. Journal of Power Sources, 1998, 74(1):24-28. [4] HE Benlin, ZHOU Wenjia, BAO Shujuan,et al. Preparation and electrochemical properties of LiMn2O4 by the microwave-assisted rheological phase method[J]. Electrochimica Acta, 2007, 52(9):3286-3293. [5] LIU W, FARRIAGTON G C. Synthesis and electro-chemicalstudies of spinel phase LiMn2O4 cathode materials prepared by the pechini process[J]. Journal of the Electrochemical Society, 1996, 143(3):879-884. [6] QIU X, SUN X, SHEN W, et al. Spinel Lil+xMn2O4 synthesized by co-precipitation as cathodes for Li-ion batteries[J]. Solid State Ionics, 1997, 93(3/4):335-339. [7] KANAMURA K, DOKKO K, KAIZAWA T. Synthesis of spinel LiMn2O4 by a hydrothermal process in supercritical water with heat-treatment[J]. Journal of the Electrochemical Society, 2005, 152(2):391-195. [8] WU H M, TU J P, YUAN Y F, et al. One-step synthesis LiMn2O4 cathode by a hydrothermal mehod[J]. Journal of Power Sources, 2006, 161(2):1260-1263. [9] 何向明, 王莉, 张国昀. 溶胶凝胶法合成锂离子电池正极材料LiMn2O4[J]. 电化学, 2006, 12(1):104-106. HE Xiangming, WANG Li, ZHANG Guojun. Preparation of spinel LiMn2O4 cathode materials for Li-ion batteries based on sol-gel process[J]. Electrochemistry, 2006, 12(1):104-106. [10] 郭守武, 伏勇胜, 刘毅, 等. 水热法制备锰酸锂纳米粉体及其电化学性质研究[J]. 陕西科技大学学报, 2015, 6(3):37-41. GUO Shouwu, FU Yongsheng, LIU Yi, et al. A facile hydrothermal approach to synthesize nanosized single-crystal LiMn2O4 with high rate capability[J]. Journal of Shaanxi University of Science and Technology(Natural Science Edition), 2015, 6(3):37-41. [11] KANG B J, JOO J B, LEE J K, et al.Surface modification of cathodes with nanosized amorphous MnO2 coating for high-power application in lithium-ion batteries[J]. J. Electroanal Chem., 2014, 728:34-20. [12] ZHANG Z J, CHOU S L, GU Q F, et al. Enhancing the high rate capability and cycling stability of LiMn2O4 by coating of solid-state electrolyte LiNbO3[J]. ACS Applied Materials & Interfaces, 2015, 6(24):22155-22165. [13] FRANGER S, CRAS F L, BOURBON C, et al. Comparison between different LiFeO4 synthesis routes and their influence on its phosico-chemical properties[J]. J. Power Sources, 2003, 119-121:252-257. [14] YU Feng, ZHANG Jingjie, YANG Yanfeng, et al. Reacation mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbonthermal method[J]. Electrochim Acta, 2009, 54:7389-7395. [15] GUO X F, ZHAN H, ZHOU Y H. Rapid sythesis of LiFePO4/C composite by microwave method[J]. Solid State Ionics, 2009, 180:386-391. [16] 桑俊利,王巧娟,郭西凤. 磷酸铁锂正极材料的合成与表征技术[J]. 无机盐工业, 2008, 40(2):13-16. [17] PARK K S, SON J T, CHUNG J T, et al. Synthesis of LiFePO4 By co-precipitation and microwave heating[J]. Electrochem. Commun., 2003, 5(10):839-842. [18] CHEN J J, WHITTINGHAM M S. Hydrothermal synthesis of lithium iron phosphate[J]. Electrochem. Commun., 2006, 8(5):855-858. [19] 高飞, 唐致远, 薛建军. 喷雾干燥-高温固相法制备纳米LiFePO4与LiFePO4/C材料及性能研究[J]. 无机化学学报, 2007, 23(9):1603-1608. [20] JOACHIM Maier, RUHU Amin. Defect chemistry of LiFePO4[J]. J. Electrochem Society, 2008, 155(4):A339-A344. [21] MUXINA Konarova, IZUMI Taniguchi. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling[J]. J. Power Sources, 2009, 194:1029-1035. [22] HUANG H, YIN S C, NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochem. Solid-State Lett., 2001, 4:A170-A172. [23] WANG Yonggang, WANG Yarong, EIJI Hosono, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an situ polymerization restriction method[J]. Angew Chem. Int. Ed., 2008, 47:7571-7575. [24] 王英, 黄文浩, 肖志平, 等. 镁掺杂改性磷酸铁锂正极材料及其性能研究[J]. 材料导报B:研究篇, 2013, 27(12):40-42. [25] GE Yucui, YAN Xuedong, LIU Jing, et al. An optimized Ni doped LiFePO4/C nanaocomposite with excellent rate performance[J]. Electrochim Acta, 2010, 55:5886-5890. [26] SUN Chunwen, SHREYAS Rajasekhara, et al. Monodisperse porous LiFePO4 microsphere for a high power Li-ion battery cathode[J]. J. Am. Chem. Soc., 2011, 133:2132-2135. [27] YU F, ZHANG J, YANG Y, et al. Porous micro-spherical aggregates of LiFePO4/C nanocomposites via sol-gel-spray drying method[J]. J. Power Sources, 2010, 195:6873-6878. [28] OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chem. Lett., 2001, 30:642-644. [29] SANTHANAM R, RAMBABU B. High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries[J]. J. Power Sources, 2010, 195(13):4313-4317. [30] LEE M H, KANG Y J, MYUNG S T. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochim Acta, 2004, 50(4):939-948. [31] WU F, WANG M, SU Y, et al. A novel method for synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as cathode material for lithium-ion battery[J]. Journal of Power Sources, 2010, 195(8):2362-2367. [32] ZHANG S C, QIU X P, HE Z Q, et al. Nanoparticled LiNi1/3Co1/3MnO2 as cathode material for high-rate lithium-ion batteries[J]. J. Power Sources, 2006,153:350-353. [33] 张继斌, 滑纬博, 郑卓, 等. 高倍率性能锂离子电池Li[Ni1/3Co1/3Mn1/3]O2正极材料的制备及其电化学性能[J]. 物理化学学报, 2015, 31(5):905-912. ZHANG Jibin, HUA Weibo, ZHENG Zhuo, et al. Preparation and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material for high-rate lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(5):905-912. [34] JI L, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy Environ. Sci., 2011, 4(8):2682-2699. [35] 张火成, 郭玉彬, 张娜, 等. 高功率动力电池负极材料的研究[J]. 电源技术, 2016, 140(6):1170-1171. [36] HU J, LI H, HUANG X J. Influence of micropore struture on Li-storage capacity in hard carbon spherules[J]. Solid State Ionics, 2005, 176:1151-1159. [37] TSUTOMU O, ATSUSHI U, NORIHIRO Y. Zero-strain insertion materials of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. J. Electrochem. Soc., 1995, 142(5):1431-1435. [38] PECHARROMAN C, AMARILLA J. Thermal evolution of infrared vibrational properties of Li4Ti5O12 measured by specular reflectance[J]. Physical Review B, 2000, 62(18):12062. [39] ZAGHIB K, SIMONEAU M, ARMAND M, et al. Electochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. J. Power Sources, 1999, 81:300-3005. [40] BACH S, PEREIRA-RAMOS J P, BAFFIER N. Electrochemical behavior of a lithium titanium spinel compound synthesized via a sol-gel process[J]. J. Mater. Chem., 1998, 8(1):251-253. [41] LI J, TANG Z, ZHANG Z. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12[J]. Electrochemistry Communications, 2005, 7(9):894-899. [42] ZHANG C M, ZHANG Y Y, WANG J, et al. Li4Ti5O12 prepared by a modified citric acid sol-gel method for lithium-ion battery[J]. J. Power Sources, 2013, 236:118-125. [43] LUO H J, SHEN L F, RUL K, et al. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate Li-ion batteries[J]. Journal of Alloys and Compunds, 2013, 572:37-42. [44] HUANG J J, JIANG Z Y. The synthesis of hollow spherical Li4Ti5O12 by macroemulsion method and its application in Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2008, 11(7):116-118 [45] HAN C P, HE Y B, LI H F, et al. Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating[J]. Electrochimica Acta, 2005, 157:266-273. [46] LI W, LI X, CHEN M Z, et al. AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery[J]. Electrochimica Acta, 2014, 139:104-110. [47] GANESH V, JOHN M, JASON H, et al. Characterization of microporous separators for lithium-ion batteries[J]. J. Power Sources, 1999, 77(1):34-41. [48] HUN L, MATAZ A, JILL V W, et al. Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries[J]. Journal of Applied Polymer Science, 2013, 129(4):1939-1951. [49] KHAN W S, ASMATULU R, RODRIGUEZ V, et al. Enhancing thermal and ionic conductivities of electrospum PAN and PMMA nanofibers by graphene nanoflake additions for battery-separator applications[J]. International Journal of Energy Research, 2014, 38(15):2044-2051. [50] ZHANG S S, XU K, JOW T R. An inorganic composite membrane as the separator of Li-ion batteries[J]. J. Power Sources, 2005, 140(2):361-364. [51] KYUSUNG P, JOON H C, KADHIRAVAN S, et al. New battery strategies with a polymer/Al2O3 separator[J]. Journal of Power Sources, 2014, 263:52-58. [52] ZHANG Jinqiang, SUN Bing, HUANG Xiaodan, et al. Honeycomb-like porous gel polymer electolyte membrane for Li-ion batteries with enhanced safety[J]. Scientific Reports, 2014, 4:6007-6013. [53] LU Qingwen, YANG Jun, LU Wei, et al. Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries[J]. Electrochimica Acta, 2015, 152:489-495. [54] JEONG Y B, KIM D W. Effect of thickness of coating layer on polymer-coated separator on cycling performance of lithium-ion plimer cells[J]. Power Sources, 2004, 28:256-262. [55] DONG W K, JANG M K, JONG H C, et al. Electrochemical performances of lithinm-ion cells prepared with polyethylene oxide-coated separators[J]. Electrochemical Performances of Communications, 2001, 3(10):535-538. [56] KIM M, HAN G Y, YOON K J, et al. Preparation of a trilayer separator and its application to lithium-ion batteries[J]. Journal of Power Sources, 2010, 195:8302-8305. [57] JUN Y L, BHASKAR B, YOUNG C N, et al. New separator prepared by electron beam irradiation for high voltage lithium secondary batteries[J]. Nuclear Instruments and Methods in Physics Research B, 2009, 267(14):2390-2394 [58] CHANG Z M, PENG J, KA-WAI W, et al. Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide)[J]. Journal of Material Chemistry A, 2014, 2(30):11980-11986. [59] LI H, MA X T, SHI J L, et al. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2011, 56:2641-2647. [60] LI S L, XIA L, ZHANG H Y, et al. A poly(3-decyl thiophene)-modified separator with self-actuating overcharge protection mechanism for LiFePO4-based Li-ion battery[J]. Journal of Power Sources, 2011, 196(16):7021-7024. [61] DORON A, KIRA G, BORIS M, et al. On the use of vinylene carbonate(VC) as an additive to electrolyte solution for Li-ion batteries[J]. Electrchim Acta, 2002, 47(9):1423-1439. [62] 周良, 李芬芳, 樊玉川, 等. 锂离子电池有机电解液成膜添加剂的研究现状[J]. 湖南有色金属, 2006, 26(3):40-42. ZHOU Liang, LI Fenfang, FANG Yuchuan, et al. Research progress on film formation additives for Li-ion batteries[J]. Hunan Nonferrous Metals, 2006, 26(3):40-42. [63] MCMILLAN R, SLEGR H, SHU Z X, et al. Fluoroethylene carbonate electrolyte and its use in Li-ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81:20-26. [64] KANEKO H, SEKINE K, TAKAMURA T. Power capability improvement of LiBOB/PC electrolyte for Li-ion batteries[J]. Journal of Power Sources, 2005, 146:142-145. [65] ALLCOCK H R, PRANGE R, HARTLE T J. Poly(phosphazene-ethylene oxide) di and triblock copolymers as solid polymer electrolytes[J]. Macromolecules, 2001, 34(16):5463-5470. [66] KOBAYASHI M, INOGUCHI T, ⅡDA T, et al. Development of diect fluorination technology for application to materials for lithium battery[J]. Journal of Fluorine Chemistry, 2003, 120(2):105-110. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[12] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[13] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[14] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[15] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||