1 |
TARASCON J M , ARMAND M . Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
|
2 |
LIU P , XIAO L , CHEN Y , et al . Recovering valuable metals from LiNi x Co y Mn1 -x-y O2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching[J]. Journal of Alloys and Compounds, 2019, 783: 743-752.
|
3 |
LYA W, WANG Z , CAO H , et al . A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504-1521.
|
4 |
NATARAJAN S , ARAVINDAN V . Burgeoning prospects of spent lithium-ion batteries in multifarious applications[J]. Advanced Energy Materials, 2018, 8(33): doi: https://doi.org/10.1002/aenm.201802303.
|
5 |
LI L , ZHANG X , LI M , et al . The recycling of spent lithium-ion batteries: A review of current processes and technologies[J]. Electrochemical Energy Reviews, 2018, 1(4): 461-482.
|
6 |
CHEN L , TANG X , ZHANG Y , et al . Process for the recovery of cobalt oxalate from spent lithium-ion batteries[J]. Hydrometallurgy, 2011, 108(1-2): 80-86.
|
7 |
BARBIERI E M S , LIMA E P C , CANTARINO S J , et al . Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties[J]. Journal of Power Sources, 2014, 269: 158-163.
|
8 |
WANG R , LIN Y , WU S . A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries[J]. Hydrometallurgy, 2009, 99(3/4): 194-201.
|
9 |
JOULIé M , LAUCOURNET R , BILLY E . Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555.
|
10 |
LI L , GE J , CHEN R , et al . Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J]. Waste Management, 2010, 30(12): 2615-2621.
|
11 |
LI L , BIAN Y , ZHANG X , et al . Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-371.
|
12 |
LI L , QU W , ZHANG X , et al . Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Journal of Power Sources, 2015, 282: 544-551.
|
13 |
LI L , BIAN Y , ZHANG X , et al . Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study[J]. Journal of Power Sources, 2018, 377: 70-79.
|
14 |
LI L , LU J , REN Y , et al . Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2012, 218: 21-27.
|
15 |
FAN E , LI L , ZHANG X , et al . Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11029-11035.
|
16 |
ZHANG X , BIAN Y , XU S , et al . Innovative application of acid leaching to regenerate LiNi1/3Co1/3Mn1/3O2 cathodes from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5959-5968.
|
17 |
LI L , GE J , WU F , et al . Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant[J]. Journal of Hazardous Materials, 2010, 176(1-3): 288-293.
|
18 |
GAO W , LIU C , CAO H , et al . Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries[J]. Waste Management, 2018, 75: 477-485.
|
19 |
GOLMOHAMMADZADEH R , FARAJI F , RASHCHI F . Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review[J]. Resources, Conservation and Recycling, 2018, 136: 418-435.
|
20 |
ZHANG X , LI L , FAN E , et al . Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302.
|
21 |
FAN E , LI L , LIN J , et al . Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16144-16150.
|
22 |
WANG L , LI L , ZHANG X , et al . Compound-hierarchical-sphere LiNi0.5Co0.2Mn0.3O2: Synthesis, structure, and electrochemical characterization[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32120-32127.
|
23 |
ZHANG X , WANG D , CHEN H , et al . Chemistry evolution of LiNi1/3Co1/3Mn1/3O2-NaHSO4 ·H2O system during roasting[J]. Solid State Ionics, 2019, 339: doi: https://doi.org/10.1016/j.ssi.2019.05.018.
|
24 |
PARK S , KIM D , KU H, et al . The effect of Fe as an impurity element for sustainable resynthesis of LiNi1/3Co1/3Mn1/3O2 cathode material from spent lithium-ion batteries[J]. Electrochimica Acta, 2019, 296: 814-822.
|
25 |
LI Y , XIANG W , WU Z , et al . Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation[J]. Electrochimica Acta, 2018, 291: 84-94.
|
26 |
ZHENG Z , CHEN M , WANG Q , et al . High performance cathode recovery from different electric vehicle recycling streams[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13977-13982.
|
27 |
HE L , SUN S , YU J . Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method[J]. Ceramics International, 2018, 44(1): 351-357.
|
28 |
SA Q, HEELAN J A , LU Y , et al . Copper impurity effects on LiNi1/3Co1/3Mn1/3O2 cathode material[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20585-20590.
|