Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 670-678.doi: 10.19799/j.cnki.2095-4239.2020.0059
Previous Articles Next Articles
MIAO Ping1(), YAO Zhen1,2(), LEMMON John1, LIU Qinghua1, WANG Baoguo2
Received:
2020-01-31
Revised:
2020-02-25
Online:
2020-05-05
Published:
2020-05-11
Contact:
Zhen YAO
E-mail:ping.miao.c@chnenergy.com.cn;zhen.yao.c@chnenergy.com.cn
CLC Number:
MIAO Ping, YAO Zhen, LEMMON John, LIU Qinghua, WANG Baoguo. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678.
1 | 李允超, 宋华伟, 马洪涛, 等 . 储能技术发展现状研究[J]. 发电与空调, 2017, 38(4): 56-61. |
LI Y C , SONG H W , MA H T , et al . Research on the development of energy storage technology[J]. Power Generation Technology, 2017, 38(4): 56-61. | |
2 | 北极星储能网 . 储能到底有多大空间?[EB/OL]. [2019-07-16]. . |
3 | 金雪, 庄雨轩, 王辉, 等 . 氢储能解决弃风弃光问题的可行性分析研究[J]. 电工电气, 2019(4): 63-68. |
JIN X , ZHUANG Y X , WANG H , et al . Feasibility analysis research on abandoning wind and solar energy with hydrogen energy storage technology[J]. Electrotechnics Electric, 2019(4): 63-68. | |
4 | IBRAHIM H , LLINCA A , PERRON J . Energy storage systems—Characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221-1250. |
5 | 俞恩科, 陈梁金 . 大规模电力储能技术的特性与比较[J]. 浙江电力, 2011, 30(12): 4-8. |
YU E K , CHEN L J . Characteristics and comparison of large-scale electric energy storage technologies[J]. Zhejiang Electric Power, 2011, 30(12): 4-8. | |
6 | 方彤, 王乾坤, 周原冰 . 电池储能技术在电力系统中的应用评价及发展建议[J]. 能源技术经济, 2011, 23(11): 32-36. |
FANG T , WANG Q K , ZHOU Y B . Evaluation on the application of battery energy storage technologies in power system and development suggestions[J]. Electric Power Technologic Economics, 2011, 23(11): 32-36. | |
7 | MAKAROV Y V , YANG B , DESTEESE J G , et al . Wide-area energy storage and management system to balance intermittent resources in the bonneville power administration and california ISO control areas [R/OL]. Washington: Pacific Northwest National Laboratory, 2008. |
8 | 刘世念, 苏伟, 魏增福 . 化学储能技术在电力系统中的应用效果评价分析[J]. 可再生能源, 2013, 31(1): 105-108. |
LIU S N , SU W , WEI Z F . Application effect evaluation of the chemical energy storage battery in electric power system[J]. Renewable Energy Resources, 2013, 31(1): 105-108. | |
9 | 闫俊辰, CRITTENDEN C . 一种基于“能量”成本的储能技术评价新方法[J]. 储能科学与技术, 2019, 8(2): 269-275. |
YAN J C , CRITTENDEN C J . An evaluation method of energy storage technologies based on energetic costs[J]. Energy Storage Science and Technology, 2019, 8(2): 269-275. | |
10 | 李欣, 黄鲁成, 常金平 . 基于粗糙集的新能源产业中储能技术评价[J]. 武汉理工大学学报(信息与管理工程版), 2012, 34(2): 211-214+232. |
LI X , HUANG L C , CHANG J P . Evaluation of energy storage technology in new energy industry based on rough set[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2012, 34(2): 211-214+232. | |
11 | 何颖源, 陈永翀, 刘勇, 等 . 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. |
HE Y Y , CHEN Y C , LIU Y , et al . Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. | |
12 | 中国储能网 . 储能3大应用领域13个细分场景解读[EB/OL]. [2019-05-02]. . |
13 | 锂电池电解液行业标准 2018年10月1日起实施[N/J]. 功能材料信息, 2018, 15(4): 30-31. |
Lithium battery electrolyte industry standard implemented from October 1, 2018[N/J]. Functional Materials Information, 2018, 15(4): 30-31. | |
14 | LI W , DAHN J R , WAINWRIGHT D S . Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115-1118. |
15 | SUO L M , BORODIN O , GAO T , et al . ''Water-in-salt'' electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 350(6263): 938-943. |
16 | WANG F , LIN Y X , SUO L M , et al . Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive[J]. Energy & Environmental Science, 2016, 9(12): 3666-3673. |
17 | 周安行, 蒋礼威, 岳金明,等 . Water-in-salt锂离子电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 972-986. |
ZHOU A X , JIANG L W , YUE J M , et al . Research progress on lithium based water-in-salt electrolytes[J]. Energy Storage Science and Technology, 2018, 7(6): 972-986. | |
18 | GHEYTANI S , LIANG Y L , JING Y , et al . Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(2): 395-399. |
19 | SELVERSTON S , NAGELLIB E , WAINRIGHT J S , et al . All-iron hybrid flow batteries with in-tank rebalancing[J]. Journal of The Electrochemical Society, 2019, 166(10): A1725-A1731. |
20 | XIE C X , LIU Y , LU W J , et al . Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage[J]. Energy & Environmental Science, 2019, 12(6): 1834-1839. |
21 | LIN K X , CHEN Q , GERHARDT M R , et al . Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532. |
22 | LAI Y M , WAN L , WANG B G . PVDF/graphene composite nanoporous membranes for vanadium flow batteries[J]. Membranes, 2019, 9(7): 89-102. |
23 | YUAN Z Z , LIU X Q , XU W B , et al . Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nature Communications, 2018, 9: 3731-3742. |
24 | XING X Q , LIU Q H , XU W Q , et al . All-liquid electroactive materials for high energy density organic flow battery[J]. ACS Applied Energy Materials, 2019, 2(4): 2364-2369. |
25 | 张涛 . 全球最大全钒液流电池储能系统通过验收[J]. 钢铁钒钛, 2013, 34(4): 18. |
ZHANG T . The world's largest all-vanadium flow battery energy storage system passed inspection[J]. Iron Steel Vanadium Titanium, 2013, 34(4): 18. | |
26 | 中国科学院沈阳分院 . 大连化物所产业公司携手大连热电集团共同建设200 MW/800 MW·h全钒液流电池储能电站国家示范工程[EB/OL]. [2016-10-11]. . |
27 | 中国储能网 . 上海电气发布兆瓦级全钒液流储能产品 助力绿色能源新体系建设[EB/OL]. [2019-12-03]. . |
28 | LU X C , XIA G G , LEMMON P J , et al . Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives[J]. Journal of Power Sources, 2010, 195(9): 2431-2442. |
29 | WANG J L , YANG J , NULI Y , et al . Room temperature Na/S batteries with sulfur composite cathode materials[J]. Electrochemistry Communications, 2007, 9(1): 31-34. |
30 | RUY H, KIM T , KIM K , et al . Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte[J]. Journal of Power Sources, 2011, 196(11): 5186-5190. |
31 | 陈汉武, 谢远锋 . 铅酸蓄电池发展综述[J].中小企业管理与科技(中旬刊), 2019(11): 138-139. |
CHEN H W , XIE Y F . Overview of the development of lead-acid battery[J]. Management & Technology of SME, 2019(11): 138-139. | |
32 | 张天任, 赵海敏, 郭志刚, 等 . 铅炭电池关键材料研究进展及机理分析[J].储能科学与技术, 2017, 6(6): 1217-1222. |
ZHANG T R , ZHAO H M , GUO Z G , et al . Development status and mechanism analysis of the key materials in lead carbon batteries[J]. Energy Storage Science and Technology, 2017, 6(6): 1217-1222. | |
33 | COOPERA A , FURAKAWAB J , LAMC L , et al . The ultrabattery-A new battery design for a new beginning in hybrid electric vehicle energy storage[J]. Journal of Power Sources, 2009, 188(2): 642-649. |
34 | 仝鹏阳, 赵瑞瑞, 张荣博, 等 . 铅炭电池的研究进展[J]. 蓄电池, 2015, 52(5): 241-246. |
TONG P Y , ZHAO R R , ZHANG R B , et al . The development status of Pb-C battery[J]. Chinese LABAT Man, 2015, 52(5): 241-246. | |
35 | 廉嘉丽, 王大磊, 颜杰, 等 . 电力储能领域铅炭电池储能技术进展[J].电力需求侧管理, 2017, 19(3): 21-25. |
LIAN J L , WANG D L , YAN J , et al . The progresses of lead carbon battery technology for grid-scale energy storage[J]. Power Demand Side Management, 2017, 19(3): 21-25. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[4] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[5] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[6] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[7] | Xuan WANG, Qiang YE. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack [J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. |
[8] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[9] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[10] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[11] | Bin GUO, Jie XING, Fei YAO, Xiaomin JING. Optimal configuration of user-side hybrid energy storage based on bi-level programming model [J]. Energy Storage Science and Technology, 2022, 11(2): 615-622. |
[12] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[13] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[14] | Zhen YAO, Rui WANG, Xue YANG, Qi ZHANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Current situations and prospects of zinc-iron flow battery [J]. Energy Storage Science and Technology, 2022, 11(1): 78-88. |
[15] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||