Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1305-1310.doi: 10.19799/j.cnki.2095-4239.2021.0050
• Energy Storage Materials and Devices • Previous Articles Next Articles
Rong ZHANG1(), Shuguang WANG1(), Xuan SUN1, Xiaosong JIANG1, Lei HU2, Xiaoming YAN2, Gaohong HE2
Received:
2021-02-02
Revised:
2021-02-27
Online:
2021-07-05
Published:
2021-06-25
Contact:
Shuguang WANG
E-mail:zhangrong@spic.com.cn;wangshuguang@spic.com.cn
CLC Number:
Rong ZHANG, Shuguang WANG, Xuan SUN, Xiaosong JIANG, Lei HU, Xiaoming YAN, Gaohong HE. Preparation of sulfonated poly(ether ether ketone) amphoteric ion exchange membrane and its application in iron-chromium redox flow battery[J]. Energy Storage Science and Technology, 2021, 10(4): 1305-1310.
Fig. 2
SEM diagram: SPEEK [(a): surface, (a'): section]; SPEEK/PEI 1% [(b): surface, (b'): section]; SPEEK/PEI 3% [(c): surface, (c'): section]; SPEEK/PEI 5% [(d): surface, (d'): section]; SPEEK/PEI 10% [(e): surface, (e'): section]; EDX diagram of SPEEK / PEI 3% membrane: (f) N element and (g) S element"
Table 1
Thickness of membrane, IEC, Swelling ratio, Water uptake, Conductivity and Fe2+ & Cr3+permeability"
膜 | 厚度/μm | 离子交换容量 /mmol·g-1 | 溶胀率/% | 吸水率/% | 离子电导率/mS·cm-1 | Fe2+ 渗透率×109 /cm2·s-1 | Cr3+渗透率×109 /cm2·s-1 |
---|---|---|---|---|---|---|---|
SPEEK | 50 | 2.05 | 8.3 | 21.5 | 104 | 7.03 | 8.13 |
SPEEK/PEI 1% | 51 | 1.98 | 7.8 | 19.7 | 99 | 7.28 | 8.25 |
SPEEK/PEI 3% | 52 | 1.88 | 7.1 | 17.7 | 94 | 7.58 | 8.70 |
SPEEK/PEI 5% | 50 | 1.64 | 7.1 | 16.3 | 72 | 6.92 | 7.83 |
SPEEK/PEI 10% | 51 | 1.43 | 5.6 | 13.3 | 47 | 5.47 | 6.62 |
1 | 杨林, 王含, 李晓蒙, 等. 铁-铬液流电池250 kW/1.5 MW·h示范电站建设案例分析[J]. 储能科学与技术, 2020, 9(3): 751-756. |
YANG L, WANG H, LI X M, et al. Introduction and engineering case analysis of 250 kW/1.5 MW·h iron-chromium redox flow batteries energy storage demonstration power station[J]. Energy Storage Science and Technology, 2020, 9(3): 751-756. | |
2 | DING Y, ZHANG C K, ZHANG L Y, et al. Molecular engineering of organic electroactive materials for redox flow batteries[J]. Chemical Society Reviews, 2018, 47(1): 69-103. |
3 | ZHANG C K, ZHANG L Y, DING Y, et al. Progress and prospects of next-generation redox flow batteries[J]. Energy Storage Materials, 2018, 15: 324-350. |
4 | ZHANG C K, NIU Z H, PENG S S, et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials, 2019, 31(24): 1901052. |
5 | 胡磊, 高莉, 焉晓明, 等. 全钒液流电池膜离子选择性传导通道构建的研究进展[J]. 化工进展, 2020, 39(6): 2079-2092. |
HU L, GAO L, YAN X M, et al. Progress in construction of ion-selective transport channels in membranes for vanadium flow batteries[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2079-2092. | |
6 | JIANG B, WU L T, YU L H, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries[J]. Journal Membrane Science, 2016, 510: 18-26. |
7 | YE J Y, ZHAO X L, MA Y L, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra‐stable and high-performance vanadium redox flow batteries[J]. Advanced Energy Materials, 2020, 10(22): 1904041. |
8 | ZHANG B G, ZHANG S H, WENG Z H, et al. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications[J]. Journal of Power Sources, 2016, 325: 801-807. |
9 | ZHANG B G, WANG Q, GUAN S S, et al. High performance membranes based on new 2-adamantane containing poly(aryl ether ketone) for vanadium redox flow battery applications[J]. Journal of Power Sources, 2018, 399: 18-25. |
10 | DING Liming, SONG Xipeng, WANG Lihua, ZHAO Zhiping. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications[J]. Journal Membrane Science, 2019, 578: 126-135. |
11 | CHEN Y N, ZHANG S H, JIN J Y, et al. Poly(phthalazinone ether ketone) amphoteric ion exchange membranes with low water transport and vanadium permeability for vanadium redox flow battery application[J]. ACS Applied Energy Materials 2019, 2(11): 8207-8218. |
12 | CHEN Y N, ZHANG S H, LIU Q, et al. Investigation of poly(phthalazinone ether ketone) amphoteric ion exchange membranes in vanadium redox flow batteries[J]. Journal of Materials Science, 2020, 55(28): 13964-13979. |
13 | YANG P, LONG J, XUAN S S, et al. Branched sulfonated polyimide membrane with ionic cross-linking for vanadium redox flow battery application[J]. Journal of Power Sources, 2019: 438: 226993. |
14 | HUANG X D, PU Y, ZHOU Y Q, et al. In-situ and ex-situ degradation of sulfonated polyimide membrane for vanadium redox flow battery application[J]. Journal Membrane Science, 2017, 526: 281-292. |
15 | LU W J, YUAN Z Z, ZHAO Y Y, et al. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces[J]. Energy & Environmental Science, 2016, 9(7): 2319-2325. |
16 | ZHANG Y X, ZHENG L Y, LIU B, et al. Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery[J]. Journal Membrane Science, 2019, 584: 173-180. |
17 | DAI W J, SHEN Y, LI Z H, et al. SPEEK/graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery[J]. Journal of Materials Chemistry A, 2014, 2(31): 12423-12432. |
18 | ZHANG Y X, WANG H X, LIU B, et al. An ultra-high ion selective hybrid proton exchange membrane incorporated with zwitterion-decorated graphene oxide for vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2019, 7(20): 12669-12680. |
19 | YUAN Z Z, LI X F, HU J B, et al. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium[J]. Physical Chemistry Chemical Physics, 2014, 16(37): 19841-19847. |
20 | JIANG B W, HU L, YAN X M, et al. A new long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) /polybenzimidazole (PBI) amphoteric membrane for vanadium redox flow battery[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1918-1924. |
21 | CHEN Y, LIU Z C, LIN M J, et al. Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries[J]. Science China Chemistry, 2019, 62(4): 479-490. |
22 | HU L, GAO L, ZHANG C K, et al. "Fishnet-like" ion-selective nanochannels in advanced membranes for flow batteries[J]. Journal of Materials Chemistry A, 2019, 7(37): 21112-21119. |
23 | HU L, GAO L, YAN X M, et al. Proton delivery through a dynamic 3D H-bond network constructed from dense hydroxyls for advanced ion-selective membranes[J]. Journal of Materials Chemistry A, 2019, 7(25): 15137-15144. |
24 | HU L, DU Y, GAO L, et al. Nanoscale solid superacid-coupled polybenzimidazole membrane with high ion selectivity for flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16493-16502. |
25 | CHEN D J, QI H N, SUN T T, et al. Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications[J]. Journal of Membrane Science, 2019, 586: 202-210. |
26 | XI J Y, LI Z H, YU L H, et al. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2015, 285: 195-204. |
27 | CHU F Q, CHU X F, LÜ T, et al. Amphoteric membranes based on sulfonated polyether ether ketone and imidazolium-functionalized polyphenylene oxide for vanadium redox flow battery applications[J]. ChemElectroChem, 2019, 6(19): 5041-5050. |
28 | PAN J, CHEN C, LI Y, et al. Constructing ionic highway in alkaline polymer electrolytes[J]. Energy & Environmental Science, 2014, 7(1): 354-360. |
29 | GAO L, WANG Y, CUI C Y, et al. Anion exchange membranes with "rigid-side-chain" symmetric piperazinium structures for fuel cell exceeding 1.2 W·cm-2 at 60 ℃[J]. Journal of Power Sources, 2019, 438: 227021. |
[1] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[2] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[3] | Zhihao LI, Hao PENG, Yaqin CHEN. Neural network prediction model for temperature distribution of proton exchange membrane fuel cell membrane electrode assembly [J]. Energy Storage Science and Technology, 2021, 10(6): 2053-2059. |
[4] | Jiahao YANG, Zhaoping SHI, Yibo WANG, Junjie GE, Changpeng LIU, Wei XING. In-situ/operando characterization techniques for oxygen evolution in acidic media [J]. Energy Storage Science and Technology, 2021, 10(6): 1877-1890. |
[5] | Jing ZHANG, Yan LU, Sheng LI, Guangcai XIE, Zhongmin WAN. Modeling and simulation of domestic fuel cell cogenerated heat and power system based on fuzzy PID control [J]. Energy Storage Science and Technology, 2021, 10(3): 1117-1126. |
[6] | Junxiang ZHAI, Guangli HE, Zhuang XU, Congmin LIU. Experimental study on system efficiency of air-cooled proton exchange membrane fuel cell [J]. Energy Storage Science and Technology, 2020, 9(6): 1885-1889. |
[7] | ZHAI Junxiang, HE Guangli, XIONG Yalin. Experimental study on hydrogen utilization of proton exchange membrane fuel cell system [J]. Energy Storage Science and Technology, 2020, 9(3): 684-687. |
[8] | DONG Qin, LI Cunpu, WEI Zidong. Development of alkaline membrane technologies in fuel cells [J]. Energy Storage Science and Technology, 2018, 7(2): 211-220. |
[9] | ZHU Xiaozhou, CHEN Minwu, LIU Xiangdong, ZHAO Hangfei, HAN Ming. Experimental study on anode exhaust methods of air-cooled PEMFC [J]. Energy Storage Science and Technology, 2018, 7(1): 118-. |
[10] | ZHU Xiaozhou, CHEN Minwu, LIU Xiangdong, ZHAO Hangfei, HAN Ming. Design of single cell voltage monitor system based on LabVIEW for PEMFC [J]. Energy Storage Science and Technology, 2018, 7(1): 123-. |
[11] | LI Bingyang, WU Xuran, GUO Weinan, FAN Yongsheng, WANG Baoguo. PVDF proton conductive membranes for vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2014, 3(1): 66-70. |
[12] | GAO Yan, WANG Suli, HOU Hongying, ZHAO Lliang, ZHENG Kaiyuan. Effect of operating conditions on water management of membrane electrode assembly for direct methanol fuel cell [J]. Energy Storage Science and Technology, 2013, 2(6): 610-614. |
[13] | NIU Hongjin, TANG Junke, ZHANG Yongming, ZHANG Heng. Review on ion exchange membranes for vanadium redox flow battery applications [J]. Energy Storage Science and Technology, 2013, 2(2): 132-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||