Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 523-533.doi: 10.19799/j.cnki.2095-4239.2020.0343
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:
2020-10-19
Revised:
2020-12-10
Online:
2021-03-05
Published:
2021-03-05
Contact:
Xinmei LUO
E-mail:jack01_cn@ecjtu.edu.cn
CLC Number:
Xinmei LUO, Jia'an GU. Numerical analysis of fractal fins with different aspect ratios to enhance phase change material melting heat transfer[J]. Energy Storage Science and Technology, 2021, 10(2): 523-533.
1 | LORENZINI G, OLIVEIRA ROCHA L A. Constructal design of Y-shaped assembly of fins[J]. International Journal of Heat and Mass Transfer, 2006, 49(23/24): 4552-4557. |
2 | BISERNI C, DALPIAZ F L, FAGUNDES T M, et al. Constructal design of T-shaped morphing fins coupled with a trapezoidal basement: A numerical investigation by means of exhaustive search and genetic algorithm[J]. International Journal of Heat and Mass Transfer, 2017, 109: 73-81. |
3 | ALIZADEH M, HOSSEINZADEH K, SHAHAVI M H, et al. Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material[J]. Applied Thermal Engineering, 2019, doi:10.1016/j.applthermaleng.2019.114436. |
4 | CHENG H, LUO T, YU J, et al. Experimental study of a shell-and-tube phase change heat exchanger unit with/without circular fins[J]. Energy Procedia, 2018, 152: 990-996. |
5 | LORENZINI G, MORETTI S. Numerical analysis on heat removal from Y-shaped fins: Efficiency and volume occupied for a new approach to performance optimisation[J]. International Journal of Thermal Sciences, 2007, 46(6): 573-579. |
6 | SHATIKIAN V, ZISKIND G, LETAN R. Numerical investigation of a PCM-based heat sink with internal fins[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3689-3706. |
7 | YANG X, GUO J, YANG B, et al. Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit[J]. Applied Energy, 2020, doi:10.1016/j.apenergy.2020.115772. |
8 | ALIZADEH M, PAHLAVANIAN M H, TOHIDI M, et al. Solidification expedition of phase change material in a triplex-tube storage unit via novel fins and SWCNT nanoparticles[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2019.101188. |
9 | LI F, SHEIKHOLESLAMI M, DARA R N, et al. Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process[J]. Journal of Molecular Liquids, 2020, doi:10.1016/j.molliq.2019.111939. |
10 | FORNARELLI F, CAMPOREALE S M, FORTUNATO B. Simplified theoretical model to predict the melting time of a shell-and-tube LHTES[J]. Applied Thermal Engineering, 2019, 153: 51-57 |
11 | LIANG H, NIU J, GAN Y. Performance optimization for shell-and-tube PCM thermal energy storage[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2020.101421. |
12 | DENG Z, WU S, XU H, et al. Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2857-2871. |
13 | HAJMOHAMMADI M R. Optimal design of tree-shaped inverted fins[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1352-1360. |
14 | ZHENG J, WANG J, CHEN T, et al. Solidification performance of heat exchanger with tree-shaped fins[J]. Renewable Energy, 2020, 150: 1098-1107. |
15 | LUO X, LIAO S. Numerical study on melting heat transfer in dendritic heat exchangers[J]. Energies, 2018, 11(10): 1-11. |
16 | ZHANG C, LI J, CHEN Y. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, doi:10.1016/j.apenergy.2019.114102. |
17 | YU C, WU S, HUANG Y, et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2020.101498. |
18 | LUO X, LIAO S. Lattice Boltzmann simulation of tree-shaped fins enhanced melting heat transfer[J]. Numerical Heat Transfer, Part A: Applications, 2018, 74(5): 1228-1243. |
19 | NÓBREGA C R E S, ISMAIL K A R, LINO F A M. Solidification around axial finned tube submersed in PCM: Modeling and experiments[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2020.101438. |
[1] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[2] | Weishu WANG, Xiangxin ZHANG, Zikun YAO, Juan ZHEN. Study on reaction rate characteristics of hydrogen storage in MgH2 reactor [J]. Energy Storage Science and Technology, 2022, 11(5): 1543-1550. |
[3] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[4] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[5] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[6] | Xiaoguang ZHANG, Xiaonan PAN, Jinming LI, Li LIU, Yan HE. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(1): 127-135. |
[7] | Enda CI, Hui WANG, Xiaoqing LI, Ying ZHANG, Zhenying ZHANG, Jianqiang LI. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2022, 11(1): 30-37. |
[8] | Yi WU, Chao ZHANG, Ziye LING, Zhengguo ZHANG, Xiaoming FANG. Developing thermal therapy nasal strip based on paraffin/SEBS composite phase change material [J]. Energy Storage Science and Technology, 2021, 10(4): 1285-1291. |
[9] | Juhua HUANG, Qiang CHEN, Ming CAO, Yafang ZHANG, Ziqiang LIU, Jin HU. Thermal management simulation analysis of cylindrical lithium-ion battery pack coupled with phase change material and water-jacketed liquid-cooled structures [J]. Energy Storage Science and Technology, 2021, 10(4): 1423-1431. |
[10] | Haimin WANG, Yufei WANG, Feng HU. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. |
[11] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[12] | Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Yalan TANG. Properties of different particle-sized activated carbon/myristic acid composite phase change material [J]. Energy Storage Science and Technology, 2021, 10(1): 177-189. |
[13] | Jianjun WANG, Yuxia SHEN, Yu ZHANG, Tuodi ZHANG, Yong LI, Yi WANG. T-history method and its application in the determination of thermophysical properties of phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 280-286. |
[14] | Wen'jie YE, Xiao YANG, Fuhua SUN, Dongmei YANG, Wei DU, Bo YANG, Yang LIU, Qiyang WANG. Heat release property of phase change materials based on a microchannel heat exchanger [J]. Energy Storage Science and Technology, 2020, 9(6): 1747-1754. |
[15] | Sai WANG, Zhigao SUN, Juan LI, Cuimin LI. Preparation and properties of lauric acid/tetradecanol/SiO2 shape-stabilized phase change materials [J]. Energy Storage Science and Technology, 2020, 9(6): 1768-1774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||