Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (3): 250-266.doi: 10.3969/j.issn.2095-4239.2013.03.010
• Expert lectures • Previous Articles Next Articles
GAO Jian, LV Yingchun, LI Hong
Received:
2013-04-15
Revised:
2013-04-18
Online:
2013-06-19
Published:
2013-06-19
CLC Number:
GAO Jian, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (III) --Phase transition and phase diagram[J]. Energy Storage Science and Technology, 2013, 2(3): 250-266.
[1] Liu Changjun(刘长俊). 相律及相图热力学[M]. Beijing:Higher Education Press,1995. [2] Grey C P,Dupré N. NMR studies of cathode materials for lithium-ion rechargeable batteries[J]. Chem. Rev. ,2004,104(10):4493-4512. [3] Sugiyama J,Mukai K,Nozaki H, et al. Antiferromagnetic spin structure and lithium ion diffusion in Li 2 MnO 3 probed by µ + SR[J]. Phys. Rev. B ,2013,87(2). doi:10.1103/PhysRevB.87.024409. [4] Yao J,Konstantinov K,Wang G X, et al . Electrochemical and magnetic characterization of LiFePO 4 and Li 0.95 Mg 0.05 FePO 4 cathode materials[J]. J. Solid State Electr. ,2007,11(2):177-185. [5] Ramzan M,Ahuja R. Ferromagnetism in the potential cathode material LiNaFePO 4 F[J]. Europhys. Lett. ,2009,87(1). doi:10.1209/ 0295-5075/87/18001. [6] Li G H,Ikuta H,Uchida T, et al . The spinel phases LiM y Mn 2- y O 4 (M=Co,Cr,Ni)as the cathode for rechargeable lithium batteries[J]. J. Electrochem. Soc. ,1996,143(1):178-182. [7] Ivancevic V G,Ivancevic T T. Complex Nonlinearity:Chaos,Phase Transitions,Topology Change and Path Integrals (Understanding Complex Systems)[M]. Berlin:Springer -Verlag Berlin,2008. [8] Yu Lu(于渌),Hao Bolin(郝柏林). 相变和临界现象[M]. Beijing:Science Press,1984. [9] Cheng Xiaonong(程晓农),Dai Qixun(戴起勋),Shao Honghong(邵红红). 材料固态相变与扩散[M]. Beijing:Chemical Industry Press,2006. [10] Shimura T,Murahashi D,Iwahara H,Yogo T. Lithium ionic conduction in LiAlO 2 -based oxides at elevated temperatures[C]// Proceedings of the 8th Asian Conference,Singapore:World Scientific Publishing Co. Pte. Ltd.,2002:613-620. [11] Ceder G,Chiang Y M,Sadoway D R, et al . Identification of cathode materials for lithium batteries guided by first-principles calculations[J]. Nature ,1998,392(6677):694-696. [12] Zhang Jin(张进),Cao Gaoshao(曹高劭),Zhao Xinbing(赵新兵), et al . Electrochemical properties of α-LiAlO 2 coated LiNi 0.4 Co 0.2 Mn 0.4 O 2 by solid reaction[J]. Chinese Journal of Inorganic Chemistry (无机化学学报),2008,24(3):94-100. [13] Sun Y C,Wang Z X,Chen L Q, et al . Improved electrochemical performances of surface-modified spinel LiMn 2 O 4 for long cycle life lithium-ion batteries[J]. J. Electrochem. Soc. ,2003,150(10):A1294-A1298. [14] Cao H,Xia B J,Zhang Y, et al . LiAlO 2 -coated LiCoO 2 as cathode material for lithium ion batteries[J]. Solid State Ionics ,2005,176(9-10):911-914. [15] Kim Y,Kim H S,Martin S W. Synthesis and electrochemical characteristics of Al 2 O 3 -coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials for lithium ion batteries[J]. Electrochem. Acta. ,2006,52(3):1316-1322. [16] Kim H S,Kim Y,Kim S I, et al . Enhanced electrochemical properties of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode material by coating with LiAlO 2 nanoparticles[J]. J. Power Sources ,2006,161(1):623-627. [17] Lei L,He D W,Zou Y T, et al . Phase transitions of LiAlO 2 at high pressure and high temperature[J]. J. Solid State Chem. ,2008,181(8):1810-1815. [18] Marezio M,Remeika J P. High-pressure synthesis and crystal structure of Alpha-LiAlO 2 [J]. J. Chem. Phys. ,1966,44(8):3143-3144. [19] Li X J,Kobayashi T,Zhang F X, et al . A new high-pressure phase of LiAlO 2 [J]. J. Solid State Chem. ,2004,177(6):1939-1943. [20] Marezio M,Remeika J P. Polymorphism of LiMO 2 compounds and high-pressure single-crystal synthesis of LiBO 2 [J]. J. Chem. Phys. ,1966,44(9):3348-3353. [21] Chang C H,Margrave J L. High-pressure-high-temperature syntheses.3. Direct syntheses of new high-pressure forms of LiAlO 2 and LiGaO 2 and polymorphism in LiMO 2 compounds (M=B, Al, Ga)[J]. J. Am. Chem. Soc. ,1968,90(8):2020-2022. [22] Danek V,Tarniowy M,Suski L. Kinetics of the alpha gamma phase transformation in LiAlO 2 under various atmospheres within the 1073-1173 K temperatures range[J]. J. Mater. Sci. ,2004,39(7):2429-2435. [23] Rasneur B,Charpin J. Chemical-properties of lithium ceramics - reactivity with water and water-vapor[J]. J. Nucl. Mater. ,1988,155:461-465. [24] Finn P A. Effects of different environments on the thermal-stability of powdered samples of LiAlO 2 [J]. J. Electrochem. Soc. ,1980,127(1):236-238. [25] Tomimatsu N,Ohzu H,Akasaka Y, et al . Phase stability of LiAlO 2 in molten carbonate[J]. J. Electrochem. Soc. ,1997,144(12):4182-4186. [26] Ribeiro R A,Silva G G,Mohallem N D S. The influences of heat treatment on the structural properties of lithium aluminates [J]. J. Phys. Chem. Solids ,2001,62(5):857-864. [27] Byker H J,Eliezer I,Ellezer N, et al . Calculation of a phase-diagram for the LiO 0.5 -AlO 1.5 system[J]. J. Phys. Chem-Us ,1979,83(18):2349-2355. [28] Isupov V P,Eremina N V. Effect of mechanical activation of Al(OH) 3 on its reaction with Li 2 CO 3 [J]. Inorg. Mater. ,2012,48(9):918-924. [29] Luo C,Martin M. Stability and defect structure of spinels Li 1+ x Mn 2- x O 4- δ :I. In situ investigations on the stability field of the spinel phase[J]. J. Mater. Sci. ,2007,42(6):1955-1964. [30] Kelder E,Jak M,Schoonman J, et al . Quality control of Li 1+ δ Mn 2- δ O 4 spinels with their impurity phases by Jaeger and Vetter titration[J]. J. Power Sources ,1997,68(2):590-592. [31] Thackeray M,Mansuetto M,Dees D, et al . The thermal stability of lithium-manganese-oxide spinel phases[J]. Materials Research Bulletin ,1996,31(2):133-1340. [32] Boulineau A,Croguennec L,Delmas C, et al . Thermal stability of Li 2 MnO 3 :From localized defects to the spinel phase[J]. Dalton Transactions ,2012,41(5):1574-1581. [33] 谢彬. New electrolytes for Li-ion batteries [D]. Beijing:Institute of physics,Chinese Academy of Sciences,2008. [34] Liang H Y,Li H,Wang Z X, et al . New binary room-temperature molten salt electrolyte based on urea and LiTFSI[J]. J. Phys. Chem. B ,2001,105(41):9966-9969. [35] Hu Y S,Wang Z X,Huang X J, et al . Physical and electrochemical properties of new binary room-temperature molten salt electrolyte based on LiBETI and acetamide[J]. Solid State Ionics ,2004,175(1-4):277-280. [36] Hu Y S,Wang Z X,Li H, et al . Ionic conductivity and association studies of novel RTMS electrolyte based on LiTFSI and acetamide[J]. J. Electrochem. Soc. ,2004,151(9):A1424-A1428. [37] Xie B,Li L F,Li H, et al. A preliminary study on a new LiBOB/acetamide solid phase transition electrolyte[J]. Solid State Ionics ,2009,180(9-10):688-692. [38] He X M,Pu W H,Wang L, et al . Plastic crystals:An effective ambient temperature all-solid-state electrolyte for lithium batteries[J]. Prog. Chem. ,2006,18(1):24-29. [39] Timmermans J. Plastic crystals A historical review[J]. J. Phys. Chem. Solids ,1961,18(1):1-8. [40] Post B. The cubic form of carbon tetrachloride[J]. Acta Crystallogr ,1959,12(4):349. [41] Staveley L A. Phase transitions in plastic crystals[J]. Annu. Rev. Phys. Chem. ,1962,13:351-368. [42] Cooper E I,Angell C A. Ambient-temperature plastic crystal fast ion conductors(plicfics)[J]. Solid State Ionics ,1986,18-19:570-576. [43] Chandra D,Helms J H,Majumdar A. Ionic-conductivity in ordered and disordered phases of plastic crystals[J]. J. Electrochem. Soc. ,1994,141(7):1921-1927. [44] Hattori M,Fukada S I,Nakamura D, et al . Studies of the anisotropic self-diffusion and reorientation of butylammonium cations in the rotator phase of butylammonium chloride using H-1 magnetic-resonance,electrical-conductivity and thermal measurements[J]. J. Chem. Soc. Faraday T. ,1990,86(22):3777-3783. [45] Ishida H,Furukawa Y,Kashino S, et al . Phase transitions and ionic motions in solid trimethylethylammonium iodide studied by H-1 and I-127 NMR,electrical conductivity,X-ray diffraction,and thermal analysis[J]. Ber Bunsen Phys. Chem. ,1996,100(4):433-439. [46] Tanabe T,Nakamura D,Ikeda R. Novel ionic plastic phase of [(CH 3 ) 4 N]SCN obtainable above 455 K studied by proton magnetic- resonance,electrical-conductivity and thermal measurements[J]. J. Chem. Soc. Faraday T. ,1991,87(7):987-990. [47] Shimizu T,Tanaka S,Onodayamamuro N, et al . New rotator phase revealed in di-n-alkylammonium bromides studied by solid-state NMR,powder XRD,electrical conductivity and thermal measurements[J]. J. Chem. Soc. Faraday T. ,1997,93(2):321-326. [48] Macfarlane D R,Meakin P,Sun J, et al . Pyrrolidinium imides:A new family of molten salts and conductive plastic crystal phases[J]. J. Phys. Chem. B ,1999,103(20):4164-4170. [49] Long S,Macfarlane D R,Forsyth M. Fast ion conduction in molecular plastic crystals[J]. Solid State Ionics ,2003,161(1-2):105-112. [50] Long S,Macfarlane D R,Forsyth M. Ionic conduction in doped succinonitrile[J]. Solid State Ionics ,2004,175(1-4):733-738. [51] Alarco P J,Abu-lebdeh Y,Abouimrane A, et al. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors[J]. Nat. Mater. ,2004,3(7):476-481. [52] Macfarlane D R,Huang J H,Forsyth M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries[J]. Nature ,1999,402(6763):792-794. [53] Goodenough J B,Hong H Y P,Kafalas J A. Fast Na + -ion transport in skeleton structures[J]. Materials Research Bulletin ,1976,11(2):203-220. [54] Catti M,Stramare S,Ibberson R. Lithium location in NASICON-type Li + conductors by neutron diffraction I:Triclinic alpha-LiZr 2 (PO4) 3 [J]. Solid State Ionics ,1999,123(1-4):173-180. [55] Catti M,Stramare S. Lithium location in NASICON-type Li + conductors by neutron diffraction II:Rhombohedral alpha-LiZr 2 (PO 4 ) 3 at T =423 K[J]. Solid State Ionics ,2000,136:489-494. [56] Sudreau F,Petit D,Boilot J P. Dimorphism,phase-transitions,and transport-properties in LiZr 2 (PO 4 ) 3 [J]. J. Solid State Chem. ,1989,83(1):78-90. [57] Petie D,Colomban P,Collin G, et al . Fast ion-transport in LiZr 2 (PO 4 ) 3 - structure and conductivity[J]. Materials Research Bulletin ,1986,21(3):365-371. [58] Casciola M,Costantino U,Merlini L, et al . Preparation,structural characterization and conductivity of LiZr 2 (PO 4 ) 3 [J]. Solid State Ionics ,1988,26(3):229-235. [59] Liang Jingkui(梁敬魁). 相图与相结构:相图的理论,实践和应用[M]. Beijing:Science Press,1993. [60] Atkins P,de Paula J. Atkins' Physical Chemistry[M]. 8th. edition. Oxford:Oxford University Press,2006. [61] Zeng Yanwei(曾燕伟). Fundamentals of Inorganic Materials Science[M]. Wuhan:Wuhan Technology Press(武汉理工大学出版社),2012. [62] Lu Xueshan(陆学善). 相图与相变[M]. Hefei:Press of University of Science and Technology of China,1990. [63] Vandermarel C,Vinke G J B,Vanderlugt W. The phase-diagram of the system lithium-silicon[J]. Solid State Communications ,1985,54(11):917-919. [64] Chevrier V L,Zwanziger J W,Dahn J R. First principles study of Li-Si crystalline phases:Charge transfer,electronic structure,and lattice vibrations[J]. J. Alloy Compd. ,2010,496(1-2):25-36. [65] Zhou G W,Li H,Sun H P, et al . Controlled Li doping of Si nanowires by electrochemical insertion method[J]. Appl. Phys. Lett. ,1999,75(16):2447-2449. [66] Li H,Huang X J,Chen L Q, et al . The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics ,2000,135(1-4):181-191. [67] Key B,Bhattacharyya R,Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries [J]. J. Am. Chem. Soc. ,2009,131(26):9239-9249. [68] Hatchard T D,Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. J. Electrochem. Soc. ,2004,151(6):A838-A842. [69] Padhi A K,Nanjundaswamy K S,Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J. Electrochem. Soc. ,1997,144(4):1188-1194. [70] Delacourt C,Poizot P,Tarascon J M, et al. The existence of a temperature-driven solid solution in LixFePO 4 for 0 ≤ x ≤ 1[J]. Nat. Mater. ,2005,4(3):254-260. [71] Dodd J L,Yazami R,Fultz B. Phase diagram of Li( x )FePO 4 [J]. Electrochemical and Solid State Letters ,2006,9(3):A151-A155. [72] Meethong N,Kao Y H,Speakman S A, et al . Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties[J]. Adv. Funct. Mater. ,2009,19(7):1060-1070. [73] Thackeray M M. Manganese oxides for lithium batteries[J]. Prog. Solid State Ch. ,1997,25(1-2):1-71. [74] Gummow R J,Dekock A,Thackeray M M. Improved capacity retention in rechargeable 4 V lithium lithium manganese oxide (spinel)cells[J]. Solid State Ionics ,1994,69(1):59-67. [75] Thackeray M M,Mansuetto M F,Dees D W, et al . The thermal stability of lithium-manganese-oxide spinel phases[J]. Materials Research Bulletin ,1996,31(2):133-140. [76] Thackeray M M,Johnson C S,Vaughey J T, et al . Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries[J]. J. Mater. Chem. ,2005,15(23):2257-2267. [77] Kim J S,Johnson C S,Vaughey J T, et al . Electrochemical and structural properties of x Li 2 M'O 3 center dot(1- x )LiMn 0.5 Ni 0.5 O 2 eIectrodes for lithium batteries (M' = Ti,Mn,Zr; 0 ≤ x ≤ 0.3)[J]. Chem. Mater. ,2004,16(10):1996-2006. [78] Zhang Lianqi(张联齐),Xiao Chengwei(肖成伟),Yang Ruijuan(杨瑞娟). Ordered/disordered rocksalt structured Li 1+ x M 1- x O 2 cathode materials for Li-ion battery[J]. Progress in Chemistry ,2011,23(2-3):410-417. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[5] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[6] | SHEN Xiu, ZENG Yuejing, LI Ruiyang, LI Jialin, LI Wei, ZHANG Peng, ZHAO Jinbao. In situ solidification of flame-retardant lithium-ion batteries by γ-ray irradiation [J]. Energy Storage Science and Technology, 2022, 11(6): 1816-1821. |
[7] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[8] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[9] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[10] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[11] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[12] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[13] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[14] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[15] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||