| 1 | 
																						 
											LAI Y X, WU W X, CHEN K, et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack[J]. International Journal of Heat and Mass Transfer, 2019, 144: doi: 10.1016/j.ijheatmasstransfer.2019.118581.
																						 | 
										
																													
																							| 2 | 
																						 
											WANG T, TSENG K J, ZHAO J Y. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied Thermal Engineering, 2015, 90: 521-529.
																						 | 
										
																													
																							| 3 | 
																						 
											SONG L M, ZHANG H Y, YANG C. Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module[J]. International Journal of Heat and Mass Transfer, 2019, 133: 827-841.
																						 | 
										
																													
																							| 4 | 
																						 
											LIU J W, LI H, LI W Y, et al. Thermal characteristics of power battery pack with liquid-based thermal management[J]. Applied Thermal Engineering, 2020, 164: doi:10.1016/j.applthermaleng.2019.114421.
																						 | 
										
																													
																							| 5 | 
																						 
											王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217.
																						 | 
										
																													
																							 | 
																						 
											WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217.
																						 | 
										
																													
																							| 6 | 
																						 
											XIE J H, GE Z J, ZANG M Y, et al. Structural optimization of lithium-ion battery pack with forced air cooling system[J]. Applied Thermal Engineering, 2017, 126: 583-593.
																						 | 
										
																													
																							| 7 | 
																						 
											CHEN K, SONG M X, WEI W, et al. Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement[J]. Energy, 2018, 145: 603-613.
																						 | 
										
																													
																							| 8 | 
																						 
											CHEN K, WANG S F, SONG M X, et al. Structure optimization of parallel air-cooled battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2017, 111: 943-952.
																						 | 
										
																													
																							| 9 | 
																						 
											MOHAMMADIAN S K, ZHANG Y W. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431-439.
																						 | 
										
																													
																							| 10 | 
																						 
											GIULIANO M R, PRASAD A K, ADVANI S G. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries[J]. Journal of Power Sources, 2012, 216: 345-352.
																						 | 
										
																													
																							| 11 | 
																						 
											NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143: 257-262.
																						 | 
										
																													
																							| 12 | 
																						 
											WANG X B, LI M, LIU Y Z, et al. Surrogate based multidisciplinary design optimization of lithium-ion battery thermal management system in electric vehicles[J]. Structural and Multidisciplinary Optimization, 2017, 56(6): 1555-1570.
																						 | 
										
																													
																							| 13 | 
																						 
											王元哲, 唐志国, 周嘉, 等. 锂离子动力电池成组设计及其优化分析[J]. 合肥工业大学学报(自然科学版), 2018, 41(12): 1590-1594.
																						 | 
										
																													
																							 | 
																						 
											WANG Y Z, TANG Z G, ZHOU J, et al. Design and optimization analysis of lithium-ion power battery pack[J]. Journal of Hefei University of Technology (Natural Science), 2018, 41(12): 1590-1594.
																						 | 
										
																													
																							| 14 | 
																						 
											WU X Y, ZHU Z H, ZHANG H Y, et al. Structural optimization of light-weight battery module based on hybrid liquid cooling with high latent heat PCM[J]. International Journal of Heat and Mass Transfer, 2020, 163: doi:10.1016/j.ijheatmasstransfer.2020.120495.
																						 | 
										
																													
																							| 15 | 
																						 
											ANSYS Inc. ANSYS FLUENT Theory Guide[EB/OL]. (2021) [2021-06-01]. https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v211/en/flu_ug/flu_ug_Viscous_Model.html%23flu_ug_Viscous_Model.htm.
																						 | 
										
																													
																							| 16 | 
																						 
											吴华新, 孙刚, 姜任秋. 空气在不同高度波纹流道内的流阻与传热的数值分析[J]. 哈尔滨工程大学学报, 2007, 28(10): 1100-1103.
																						 | 
										
																													
																							 | 
																						 
											WU H X, SUN G, JIANG R Q. Numerical analysis of air flow resistance and heat transfer between corrugated plates with channels of varied heights[J]. Journal of Harbin Engineering University, 2007, 28(10): 1100-1103.
																						 | 
										
																													
																							| 17 | 
																						 
											ZHANG H Y, WU X Y, WU Q Y, et al. Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration[J]. Applied Thermal Engineering, 2019, 159: doi: 10.1016/j.applthermaleng.2019.113968.
																						 | 
										
																													
																							| 18 | 
																						 
											英克鲁佩勒. 传热和传质基本原理[M]. 葛新石, 叶宏, 译. 北京: 化学工业出版社, 2007: 272-273.
																						 | 
										
																													
																							| 19 | 
																						 
											MALEKI H, WANG H, PORTER W, et al. Li-Ion polymer cells thermal property changes as a function of cycle-life[J]. Journal of Power Sources, 2014, 263: 223-230.
																						 | 
										
																													
																							| 20 | 
																						 
											徐向宏, 何明珠. 试验设计与Design-Expert、SPSS应用[M]. 北京: 科学出版社, 2010.
																						 |