Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (5): 1486-1493.doi: 10.19799/j.cnki.2095-4239.2021.0356
Previous Articles Next Articles
Dingzhang GUO1,2(), Zhao YIN1,2, Xuezhi ZHOU3(), Yujie XU1,2, Yong SHENG1, Wenhui SUO1, Haisheng CHEN1,2,4()
Received:
2021-07-16
Revised:
2021-07-26
Online:
2021-09-05
Published:
2021-09-08
Contact:
Haisheng CHEN
E-mail:guodingzhang@iet.cn;zhouxuezhi@iet.cn;chen_hs@iet.cn
CLC Number:
Dingzhang GUO, Zhao YIN, Xuezhi ZHOU, Yujie XU, Yong SHENG, Wenhui SUO, Haisheng CHEN. Status and prospect of gas storage device in compressed air energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493.
1 | 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2): 146-151. |
CHEN H S, LIU J C, GUO H, et al. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2(2): 146-151. | |
2 | CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312. |
3 | GUO C, XU Y J, GUO H, et al. Comprehensive exergy analysis of the dynamic process of compressed air energy storage system with low-temperature thermal energy storage[J]. Applied Thermal Engineering, 2019, 147: 684-693. |
4 | EBRAHIMI M, CARRIVEAU R, TING D S, et al. Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility[J]. Applied Energy, 2019, 242: 1198-1208. |
5 | 刘金超, 徐玉杰, 陈宗衍, 等. 压缩空气储能储气装置发展现状与储能特性分析[J]. 科学技术与工程, 2014, 14(35): 148-156. |
LIU J C, XU Y J, CHEN Z Y, et al. The development status and energy storage characteristic of gas storage device of compressed air energy storage system[J]. Science Technology and Engineering, 2014, 14(35): 148-156. | |
6 | 叶磊. 基于TOUGH-FLAC集成的含水层压气储能THM多场耦合研究[D]. 徐州: 中国矿业大学, 2020. |
YE L. Study on THM multi field coupled compressed air energy storage in aquifers based on TOUGH-FLAC integration[D]. Xuzhou: China University of Mining and Technology, 2020. | |
7 | SUCCAR S, WILLIAMS R H. Compressed air energy storage: Theory, resources, and applications for wind power, Princeton Environmental Institute[EB/OL]. 2008.https://www. researchgate. net/Publicatron/284686892_Compressed_air_energy_storage_theory_resourles_and_applications_for_wind_power_Princeton_Environmental_Institate. |
8 | PARK E S, CHUNG S K, LEE D H, et al. Natural gas-extraction to end use: Innovative method of LNG storage in underground lined rock caverns[M]. Lodon: In Tech Open, 2012. |
9 | ISHIHATA T. Underground compressed air storage facility for CAES-GT power plant utilizing an airtight lining[J]. International Society of Rock Engineering, 1997, 5(1): 17-21. |
10 | GLAMHEDEN R, CURTIS P. Excavation of a cavern for high-pressure storage of natural gas[J]. Tunnelling and Underground Space Technology, 2006, 21(1): 56-67. |
11 | KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92: 653-667. |
12 | 蒋中明, 李鹏, 赵海斌, 等. 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学, 2020, 41(1): 235-241, 252. |
JIANG Z M, LI P, ZHAO H B, et al. Experimental study on performance of shallow rock cavern for compressed air energy storage[J]. Rock and Soil Mechanics, 2020, 41(1): 235-241, 252. | |
13 | SEYMOUR R J. Ocean energy on-demand using underocean compressed air storage[C]//Proceedings of ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA. 2009: 527-531. |
14 | LIM S D, MAZZOLENI A P, PARK J K, et al. Conceptual design of ocean compressed air energy storage system[J]. Marine Technology Society Journal, 2013, 47(2): 70-81. |
15 | 张春贵, 刘福录, 朱保国, 等. GB 12337—2014《钢制球形储罐》简介[J]. 石油化工设备, 2016, 45(2): 50-55. |
ZHANG C G, LIU F L, ZHU B G, et al. Brief introduction of GB 12337—2014 steel spherical tanks[J]. Petro-Chemical Equipment, 2016, 45(2): 50-55. | |
16 | 唐建峰, 段常贵, 吕文哲, 等. 西安市天然气工程储气方案优化研究[J]. 天然气工业, 2004, 24(9): 145-147, 19. |
TANG J F, DUAN C G, LU W Z, et al. Optimization study on gas-storing programs for Xi'an natural gas engineering[J]. Natural Gas Industry, 2004, 24(9): 145-147, 19. | |
17 | 于斌, 刘志栋, 赵为伟, 等. 国内外复合材料气瓶发展概况与标准分析(一)[J]. 压力容器, 2011, 28(11): 47-52. |
YU B, LIU Z D, ZHAO W W, et al. Development of world-wide composite gas cylinder and analysis of Chinese COPV standard(1)[J]. Pressure Vessel Technology, 2011, 28(11): 47-52. | |
18 | 王登勇, 吴念. 增强热塑性塑料复合管国内外发展比较[J]. 国外塑料, 2011, 29(5): 44-49, 56-57. |
WANG D Y, WU N. Development of reinforced thermo plastic pipe[J]. World Plastics, 2011, 29(5): 44-49, 56-57. | |
19 | 李晓平, 李愚, 王茀玺, 等. 非金属复合材料管道综述[J]. 石油工业技术监督, 2017, 33(10): 1-4. |
LI X P, LI Y, WANG F X, et al. A review of nonmetallic composite pipes[J]. Technology Supervision in Petroleum Industry, 2017, 33(10): 1-4. | |
20 | PIMM A J, GARVEY S D, JONG M. Design and testing of energy bags for underwater compressed air energy storage[J]. Energy, 2014, 66: 496-508. |
21 | CHEUNG B, CARRIVEAU R, TING D S K. Storing energy underwater[J]. Mechanical Engineering, 2012, 134(12): 38-41. |
22 | 李雪梅, 杨科, 张远. AA-CAES压缩膨胀系统的运行级数优化[J]. 工程热物理学报, 2013, 34(9): 1649-1653. |
LI X M, YANG K, ZHANG Y. Optimization design of compression and expansion stages in advanced adiabatic compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1649-1653. | |
23 | GRAZZINI G, MILAZZO A. A thermodynamic analysis of multistage adiabatic CAES[J]. Proceedings of the IEEE, 2012, 100(2): 461-472. |
24 | 薛皓白, 张新敬, 陈海生, 等. 微型压缩空气储能系统释能过程分析[J]. 工程热物理学报, 2014, 35(10): 1923-1929. |
XUE H B, ZHANG X J, CHEN H S, et al. Analysis of energy release process of micro-compressed air energy storage systems[J]. Journal of Engineering Thermophysics, 2014, 35(10): 1923-1929. | |
25 | KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants[J]. Journal of Energy Resources Technology, 2012, 134(2): doi: 10.1115/1.4005659. |
26 | 刘澧源, 蒋中明, 王江营, 等. 压气储能电站地下储气库之压缩空气热力学过程分析[J]. 储能科学与技术, 2018, 7(2): 232-239. |
LIU L Y, JIANG Z M, WANG J Y, et al. Thermodynamic analyses of compressed air energy storage in a underground rock cavern[J]. Energy Storage Science and Technology, 2018, 7(2): 232-239. | |
27 | ZHOU Y, XIA C C, ZHAO H B, et al. An iterative method for evaluating air leakage from unlined compressed air energy storage (CAES) caverns[J]. Renewable Energy, 2018, 120: 434-445. |
28 | 庄绪增. 压缩空气储能系统储气室传热规律研究[D]. 北京: 华北电力大学, 2019. |
ZHUANG X Z. Study on heat transfer law of gas storage chamber for compressed air energy storage systems[D]. Beijing: North China Electric Power University, 2019. | |
29 | 王恺, 陈二锋, 张翼, 等. 复合材料气瓶充放气过程仿真与验证[J]. 压力容器, 2016, 33(12): 1-6. |
WANG K, CHEN E F, ZHANG Y, et al. Simulation and experimental validation on charge/discharge of composite cylinders[J]. Pressure Vessel Technology, 2016, 33(12): 1-6. | |
30 | 夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014, 35(5): 1391-1398. |
XIA C C, ZHANG P Y, ZHOU S W, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398. | |
31 | SERBIN K, ŚLIZOWSKI J, URBAŃCZYK K, et al. The influence of thermodynamic effects on gas storage cavern convergence[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 79: 166-171. |
32 | 蒋中明, 刘澧源, 李双龙, 等. 压气储能平江试验库受力特性数值研究[J]. 长沙理工大学学报(自然科学版), 2017, 14(4): 62-68. |
JIANG Z M, LIU L Y, LI S L, et al. Numerical study on mechanical characteristics of the Pingjiang pilot cavern for compressed air energy storage[J]. Journal of Changsha University of Science & Technology (Natural Science), 2017, 14(4): 62-68. | |
33 | ZHOU S W, XIA C C, ZHAO H B, et al. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage[J]. Journal of Geophysics and Engineering, 2017, 14(6): 1382-1398. |
34 | WU D, WANG J G, HU B W, et al. A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern[J]. Renewable Energy, 2020, 146: 907-920. |
35 | 刘小利. 储气库井柔性水泥浆体系适应性评价实验[J]. 钻采工艺, 2016, 39(3): 11-14, 127. |
LIU X L. Adaptability evaluation experiment of flexible cement slurry system[J]. Drilling & Production Technology, 2016, 39(3): 11-14, 127. | |
36 | 侯攀, 高娅, 朱忠喜. FlexSTONE弹性水泥在地下储气库中的研究与应用[J]. 天然气技术与经济, 2014, 8(4): 25-27, 78. |
HOU P, GAO Y, ZHU Z X. Application of FlexSTONE elastic cement to underground gas storage[J]. Natural Gas Technology and Economy, 2014, 8(4): 25-27, 78. | |
37 | PIMM A J. Analysis of flexible fabric structures[D]. Nottingham: University of Nottingham, 2011. |
38 | 程涵. 柔性织物折叠建模技术及展开过程数值仿真研究[D]. 南京: 南京航空航天大学, 2013. |
CHENG CHEN H. Research on folded flexible fabric modeling technology and numerical simulation of deployment process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. |
[1] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[2] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[3] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[4] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[5] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[6] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[7] | Ying SUN, Qin ZHAO, Bosi YIN, Tianyi MA. Performance of PTCDI//δ-MnO2 aqueous ammonium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1110-1120. |
[8] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[9] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[10] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[11] | Xiangyu JIA, Junshui WANG, Yang XU, Kai ZHANG. Rubbing behavior research of flywheel rotor for energy storage in view of influence of contact parameters [J]. Energy Storage Science and Technology, 2021, 10(5): 1643-1649. |
[12] | Qi XIA, Yang HE, Yujie XU, Haisheng CHEN, Jianqiang DENG. Matching performance between the trigeneration of an adiabatic compressed air energy storage system and load [J]. Energy Storage Science and Technology, 2021, 10(5): 1494-1502. |
[13] | Shenghui ZHOU, Yang HE, Haisheng CHEN, Yujie XU, Jianqiang DENG. Using an ejector to intensify the charging process of a compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1503-1513. |
[14] | Yang LI, Xinjing ZHANG, Jianfei SONG, Xiaoyu LI, Huan GUO, Yujie XU, Haisheng CHEN. Dynamic regulation and control of the discharge process in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523. |
[15] | Xing WANG, Wen LI, Yangli ZHU, Zhitao ZUO, Haisheng CHEN. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine [J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||