1 |
PALIZBAN O, KAUHANIEMI K. Energy storage systems in modern grids—Matrix of technologies and applications[J]. Journal of Energy Storage, 2016, 6: 248-259.
|
2 |
HAI A A, AOKAL K, ABED J, et al. Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications[J]. Renewable Energy, 2017, 106: 201-211.
|
3 |
SAFAEI H, KEITH D W, HUGO R J. Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization[J]. Applied Energy, 2013, 103: 165-179.
|
4 |
CHEN S, ZHU T, GAN Z X, et al. Optimization of operation strategies for a combined cooling, heating and power system based on adiabatic compressed air energy storage[J]. Journal of Thermal Science, 2020, 29(5): 1135-1148.
|
5 |
王晓露, 郭欢, 张华良, 等. 火电厂热电联产机组与压缩空气储能集成系统能量耦合特性分析[J]. 储能科学与技术, 2021, 10(2): 598-610.WANG X L, GUO H, ZHANG H L, et al. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants[J]. Energy Storage Science and Technology, 2021, 10(2): 598-610.
|
6 |
GUO H, XU Y J, CHEN H S. Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system[J]. Applied Energy, 2017, 199: 96-106.
|
7 |
ZHAO Z Y, DU X, WEN F B, et al. Investigation of 3D blade design on flow field and performance of a low pressure turbine stage[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, ASME, 2017.
|
8 |
韩俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报(自然科学版), 2014, 54(1): 102-108.HAN J, WEN F B, ZHAO G B. Curve optimization design of a turbine blade withlow aspect ratio[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(1): 102-108.
|
9 |
陈雷, 陈江. 级环境下弯叶片对涡轮气动性能影响数值研究[J]. 航空动力学报, 2011, 26(12): 2765-2771.CHEN L, CHEN J. Numerical investigation on the effect of bowed blade to aerodynamic performance of low pressure turbine under stage condition[J]. Journal of Aerospace Power, 2011, 26(12): 2765-2771.
|
10 |
隋秀明, 董甜甜, 周庆晖, 等. 高负荷低展弦比氦涡轮端壁损失机理研究[J]. 推进技术, 2021, 42(3): 540-549.SUI X M, DONG T T, ZHOU Q H, et al. Investigation on endwall loss mechanism of a highly loaded helium turbine with low aspect ratio[J]. Journal of Propulsion Technology, 2021, 42(3): 540-549.
|
11 |
YAO H, ZHOU X, WANG Z Q. Using a bowed blade to improve the supersonic flow performance in the nozzle of a supersonic industrial steam turbine[J]. ASME Journal of Engineering for Gas Turbines and Power, 2017, 139: doi: 10.1115/1.4036495.
|
12 |
ZHANG H X, CHEN S W, GONG Y. Combined application of negative bowed blades and unsteady pulsed holed suction in a high-load compressor in terms of aerodynamic performance and energy efficiency[J]. Applied Thermal Engineering, 2018, 144: 291-304.
|
13 |
GUO Z D, BU H Y, SONG L M. Experimental test of a 3D parameterized vane cascade with non-axisymmetric endwall[J]. Aerospace Science and Technology, 2019, 85: 429-442.
|
14 |
杨彤, 王松涛, 姜斌. 弯曲叶片造型对涡轮叶栅作用力影响的非定常数值研究[J]. 推进技术, 2013, 34(6): 760-767.YANG T, WANG S T, JIANG B. Unsteady numerical study of effects on turbine blade forces for the bowed blade[J]. Journal of Propulsion Technology, 2013, 34(6): 760-767.
|
15 |
刘建, 乔渭阳, 段文华. 倾斜/弯曲导叶对跨声速涡轮非定常性能的影响[J]. 哈尔滨工业大学学报, 2019, 51(1): 94-101.LIU J, QIAO W Y, DUAN W H. Effect of lean/bowed vane on the unsteady performance of transonic turbine[J]. Journal of Harbin Institute of Technology, 2019, 51(1): 94-101.
|
16 |
TAN C Q, YAMAMOTO A, CHEN H S, et al. Flowfield and aerodynamic performance of a turbine stator cascade with bowed blades[J]. AIAA Journal, 2004, 42(10): 2170-2171.
|
17 |
谢婕, 夏晨, 张远森, 等. 低展弦比微型轴流涡轮弯叶片设计[J]. 南京航空航天大学学报, 2015, 47(1): 160-166.XIE J, XIA C, ZHANG Y S, et al. Micro axial turbine bowed blade design at low aspect radio[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(1): 160-166.
|
18 |
WALRAEVENS R, GALLUS H, JUNG A, et al. Experimental and computational study of the unsteady flow in a 1.5 stage axial turbine emphasis on the secondary flow in the second stator[C]//International Gas Turbine & Aeroengine Congress & Exhibition. ASME, 1998.
|
19 |
YAO J X, JAMESON A, ALONSO J J, et al. Development and validation of a massively parallel flow solver for turbomachinery flows[J]. Journal of Propulsion and Power, 2001, 17(3): 659-668.
|
20 |
BEN S M, ROUSTANT O, GAMBOA F, et al. Universal prediction distribution for surrogate models[J]. SIAM/ASA Journal on Uncertainty Quantification, 2017, 5(1): 1086-1109.
|
21 |
SHIEH T H. Aerothermodynamic effects and modeling of the tangential curvature of guide vanes in an axial turbine stage[J]. International Journal of Rotating Machinery, 2017, 2017: doi: 10.1155/2017/3806356.
|
22 |
姚宏, 周逊, 王仲奇. 弯叶片对超声速流动的影响[J]. 西安交通大学学报, 2016, 50(9): 66-73.YAO H, ZHOU X, WANG Z Q. Effects of bowed blade design on supersonic flow[J]. Journal of Xi'an Jiaotong University, 2016, 50(9): 66-73.
|
23 |
张晓辉, 陈绍文, 李燕飞. 基于弯曲叶片的燃气涡轮导叶数值研究[J]. 推进技术, 2016, 37(3): 443-448.ZHANG X H, CHEN S W, LI Y F. Numerical investigation for curved guide vane in gas turbine[J]. Journal of Propulsion Technology, 2016, 37(3): 443-448.
|
24 |
陈雷, 陈江. 级环境下弯叶片对涡轮气动性能影响数值研究[J].航空动力学报, 2011, 26(12): 2765-2771.CHEN L, CHEN J. Numerical investigation on the effect of bowed blade to aerodynamic performance of low pressure turbine under stage condition[J]. Journal of Aerospace Power, 2011, 26(12): 2765-2771.
|
25 |
潘贤德, 陈铁锋. 高压涡轮导叶弯曲对气动性能及动叶激振力的影响[J]. 装备制造技术, 2018(2): 17-22, 62.PAN X D, CHEN T F. The effect of bowed vanes on high pressure turbine aerodynamic performance and blade vibration[J]. Equipment Manufacturing Technology, 2018(2): 17-22, 62.
|