1 |
张新敬. 压缩空气储能系统若干问题的研究[D]. 北京: 中国科学院研究生院, 2011.ZHANG X J. Investigation on compressed air energy storage system[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2011.
|
2 |
CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage systems: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312.
|
3 |
HOUSSAINY S, JANBOZORGI M, KAVEHPOUR P. Thermodynamic performance and cost optimization of a novel hybrid thermal-compressed air energy storage system design[J]. Journal of Energy Storage, 2018, 18: 206-217.
|
4 |
张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40.ZHANG X J, CHEN H S, LIU J C, et al. Research progress in compressed air energy storage system: A review[J]. Energy Storage Science and Technology, 2012, 1(1): 26-40.
|
5 |
CHEN S, ZHU T, GAN Z X, et al. Optimization of operation strategies for a combined cooling, heating and power system based on adiabatic compressed air energy storage[J]. Journal of Thermal Science, 2020, 29(5): 1135-1148.
|
6 |
陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2): 146-151.CHEN H S, LIU J C, GUO H, et al. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2(2): 146-151.
|
7 |
张华良, 谭春青, 张新敬, 等. 采用附面层抽吸(BLS)控制流动分离的数值模拟[J]. 推进技术, 2009, 30(2): 192-196.ZHANG H L, TAN Q C, ZHANG X J, et al. Numerical investigation on application of boundary layer suction to control the flow separations[J]. Journal of Propulsion Technology, 2009, 30(2): 192-196.
|
8 |
吴艳辉, 田江涛, 李清鹏, 等. 跨音轴流压气机转子叶尖喷气扩稳机理分析[J]. 工程热物理学报, 2011, 32(7): 1119-1122.WU Y H, TIAN J T, LI Q P, et al. Mechanism analysis of stability improvement with tip injection in a transonic axial-flow compressor rotor[J]. Journal of Engineering Thermophysics, 2011, 32(7): 1119-1122.
|
9 |
卢新根, 楚武利, 朱俊强, 等. 轴流压气机机匣处理研究进展及评述[J]. 力学进展, 2006, 36(2): 222-232.LU X G, CHU W L, ZHU J Q, et al. A review of studies on casing treatment of axial-flow compressor[J]. Advances in Mechanics, 2006, 36(2): 222-232.
|
10 |
HERGET A, MEYER R, ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery, 2012, 135(2): 21-26.
|
11 |
张鹏, 刘波, 毛晓晨, 等. 三维造型和非轴对称端壁在跨声速压气机中的应用[J]. 推进技术, 2016, 37(2): 250-257.ZHANG P, LIU B, MAO X C, et al. Application of 3D blading and non-axisymmetric endwall in a transonic compressor[J]. Journal of Propulsion Technology, 2016, 37(2): 250-257.
|
12 |
SMITH L H, YEH H. Sweep and dihedral effects in axial-flow turbomachinery[J]. Journal of Basic Engineering, 1963, 85(3): 401-414.
|
13 |
BREUGELMANS F, CARELS Y, DEMUTH M. Influence of dihedral on the secondary flow in a two-dimensional compressor cascade[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(3): 578-584.
|
14 |
王仲奇, 韩万今. 在低展弦比透平静叶栅中叶片的弯曲作用[J]. 工程热物理学报, 1990, 11(3): 255-262.WANG Z Q, HAN W J. The bending effect of blades in a low aspect ratio turbine cascade[J]. Journal of Engineering Thermophysics, 1990, 11(3): 255-262.
|
15 |
WEINGOLD H D, NEUBERT R J, BEHLKE R F, et al. Bowed stators: An example of CFD applied to improve multistage compressor efficiency[J]. Journal of Turbomachinery, 1997, 119(2): 161-168.
|
16 |
DENTON J D, XU L. The exploitation of three-dimensional flow in turbomachinery design[J]. Journal of Mechanical Engineering Science, 1999, 213(2): 125-137.
|
17 |
GÜMMER V, WENGER U, KAU H P. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[J]. Journal of Turbomachinery, 2001, 123(1): 40-48.
|
18 |
GALLIMORE S J, BOLGER J J, CUMPSTY N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading (I): University research and methods development[J]. Journal of Turbomachinery, 2002, 124(4): 521-532
|
19 |
DENTON J D, XU L. The effects of lean and sweep on transonic fan performance[C]//ASME Turbo Expo: Power for Land, Sea, & Air, 2002.
|
20 |
BENINI E, BIOLLO R. Aerodynamics of swept and leaned transonic compressor-rotors[J]. Applied Energy, 2007, 84(10): 1012-1027.
|
21 |
MAO M M, SONG Y P, WANG Z Q. Numerical investigation of the unsteady flow in a transonic compressor with curved rotors[J]. Chinese Journal of Aeronautics, 2008, 21(2): 97-104.
|
22 |
TAYLOR J V, MILLER R J. Competing three-dimensional mechanisms in compressor flows[J]. Journal of Turbomachinery, 2017, 139(2): doi: 10.17863/CAM.6505.
|
23 |
吕从鹏, 姜斌, 张寅豹, 等. 跨声速轴流压气机转子弯掠控制机理[J]. 航空动力学报, 2017, 32(4): 1001-1011.LYU C P, JIANG B, ZHANG Y B, et al. Controlling mechanisms of bowed and swept of rotor in transonic axial compressor[J]. Journal of Aerospace Power, 2017, 32(4): 1001-1011.
|
24 |
杨梦柯, 曹志远. 正/反弯曲对高负荷压气机叶栅流场影响机理[J]. 风机技术, 2020, 62(1): 11-21.YANG M K, CAO Z Y. Influence mechanism of positive/negative bowed blade on highly loaded compressor cascade[J]. Compressor, Blower & Fan Technology, 2020, 62(1): 11-21.
|
25 |
刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55.LIU R J, ZHANG Y W, WEN C W, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9): 52-55.
|
26 |
REID L, MOORE R D. Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor[R]. NASA, 1978.
|
27 |
MOORE R D, REID L. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.63 and 1.77, respectively, and with design pressure ratio of 2.05[R]. NASA, 1982.
|
28 |
SASAKI T, BREUGELMANS F. Comparison of sweep and dihedral effects on compressor cascade performance[J]. Journal of Turbomachinery, 1998, 120(3): 454-463.
|
29 |
VO H D, TAN C S, GREITZER E M. Criteria for spike initiated rotating stall[J]. Proceedings of ASME Turbo Expo, 2008, 130(1): 155-165.
|