Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (5): 1607-1613.doi: 10.19799/j.cnki.2095-4239.2021.0344
Previous Articles Next Articles
Shan HU1(), Chang LIU1, Yujie XU1,2, Haisheng CHEN1,2,3(), Huan GUO4
Received:
2021-07-14
Revised:
2021-08-06
Online:
2021-09-05
Published:
2021-09-08
CLC Number:
Shan HU, Chang LIU, Yujie XU, Haisheng CHEN, Huan GUO. Thermo-economic analysis of compressed air energy storage under peak load shaving condition[J]. Energy Storage Science and Technology, 2021, 10(5): 1607-1613.
1 | 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40. |
ZHANG X J, CHEN H S, LIU J C, et al. Research progress in compressed air energy storage system: A review[J]. Energy Storage Science and Technology, 2012, 1(1): 26-40. | |
2 | CHEN H S, CONG N T, YANG W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Sciences, 2009, 19(3): 291-312. |
3 | BULLOUGH C, GATZEN C, JAKIEL C, et al. Advanced adiabatic compressed air energy storage for the integration of wind energy[C]// European Wind Energy Conference, 2004. |
4 | WANG S L, CHEN G M, FANG M, et al. A new compressed air energy storage refrigeration system[J]. Energy Conversion and Management, 2006, 47(18/19): 3408-3416. |
5 | NAJJAR Y, JUBEH N. Comparison of performance of compressed-air energy-storage plant with compressed-air storage with humidification[J]. Proceeding of IMechE, Part A: Journal of Power and Energy, 2006, 220: 581-588. |
6 | HIGASHIMORI H, HASAGAWA K, SUMIDA K. Detailed flow study of mach number 1.6 high transonic flow with a shock wave in a pressure ratio 11 centrifugal compressor impeller[J]. ASME Journal of Turbomachinery, 2004, 126: 473-481. |
7 | 刘畅, 徐玉杰, 胡珊, 等. 压缩空气储能电站技术经济性分析[J]. 储能科学与技术, 2015, 4(2): 158-168. |
LIU C, XU Y J, HU S, et al. Techno-economic analysis of compressed air energy storage power plant[J]. Energy Storage Science and Technology, 2015, 4(2): 158-168. | |
8 | 王加璇, 王清照, 宋乃辉. 热经济学研究的使命与任务[J]. 热能动力工程, 2002, 17(2): 111-114. |
WANG J X, WANG Q Z, SONG N H. Mission and assignments of thermoeconomics research[J]. Journal of Engineering for Thermal Energy and Power, 2002, 17(2): 111-114. | |
9 | 张丹, 乔瑜, 曾涛, 等. 燃用低热值煤气的联合循环仿真及热经济分析[J]. 工程热物理学报, 2012, 33(2): 331-335. |
ZHANG D, QIAO Y, ZENG T, et al. Simulation and techno-economic analysis of the combined cycle using low calorific value gas[J]. Journal of Engineering Thermophysics, 2012, 33(2): 331-335. | |
10 | 沈小华, 张仁兴. 舰船燃气轮机燃气初温的热经济学优化分析[J]. 船海工程, 2007, 36(6): 38-41. |
SHEN X H, ZHANG R X. Thermo economic optimized analysis of the initial gas temperature of warship gas turbine[J]. Ship & Ocean Engineering, 2007, 36(6): 38-41. | |
11 | 张学镭, 王松岭, 陈海平, 等. 燃烧中低热值燃料时燃气轮机系统的应对方案及其性能分析[J]. 中国电机工程学报, 2006, 26(19): 110-116. |
ZHANG X L, WANG S L, CHEN H P, et al. Adjustment strategy and performance analysis of gas turbine system when burning medium and low heat value fuel[J]. Proceedings of the CSEE, 2006, 26(19): 110-116. | |
12 | 赵春, 王培红. 燃气-蒸汽联合循环热经济学分析评价指标研究[J]. 中国电机工程学报, 2013, 33(23): 44-50. |
ZHAO C, WANG P H. Investigation on the evaluation indices for thermoeconomic analysis of combined cycle power plants[J]. Proceedings of the CSEE, 2013, 33(23): 44-50. | |
13 | SILVEIRA J L. Thermoeconomic analysis method for optimization of combined heat and power systems. Part I[J]. Progress in Energy and Combustion Science, 2003, 29: 479-485. |
14 | SILVEIRA J L. Thermoeconomic analysis method for optimization of combined heat and power systems. Part II[J]. Progress in Energy and Combustion Science, 2004, 30: 673-678. |
15 | OMENDRA K S, KAUSHIK S C. Thermoeconomic evaluation and optimization of a Brayton-Rankine-Kalina combined triple power cycle[J]. Energy Conversion and Management, 2013, 71: 32-42. |
16 | 王振, 段立强. 不同运行策略下燃气轮机联合循环变工况热经济性能分析[J]. 中国电机工程学报, 2021, 41(14): 4912-4922. |
WANG Z, DUAN L Q. Thermal economic performance analysis of gas turbine combined cycle under different operation strategies[J]. Proceedings of the CSEE, 2021, 41(14): 4912-4922. | |
17 | 董师彤, 滕明勇, 潘振, 等. 地热驱动的新型冷热电三联供系统的热力学与热经济学分析[J]. 太阳能学报, 2021, 42(5): 1-9. |
DONG S T, TENG M Y, PAN Z, et al. Thermodynamic and thermoeconomic analysis of a new geothermal driven CCHP system[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 1-9. | |
18 | 杨承, 王平, 刘换新, 等. 分布式燃气-蒸汽联合循环供能系统热经济性分析[J]. 中国电机工程学报, 2019, 39(18): 5424-5432. |
YANG C, WANG P, LIU H X, et al. Thermo-economic analysis on gas-steam combined cycle-based distributed energy supply system[J]. Proceedings of the CSEE, 2019, 39(18): 5424-5432. | |
19 | AGAZZANI A, MASSARDO A F. A tool for thermoeconomic analysis and optimization of gas, steam, and combined plants[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119: 885-892. |
20 | LIU J C, ZHANG X J, XU Y J, et al. Economic analysis of using above ground gas storage devices for compressed air energy storage system[J]. Journal of Thermal Science, 2014, 23(6): 535-543. |
21 | HU S, LIU C, DING J, et al. Thermo-economic modeling and evaluation of physical energy storage in power system[J/OL]. Journal of Thermal Science, 2021. https://doi.org/10.1007/s11630-021-1417-4. |
22 | 江苏省发展和改革委员会. 苏发改价格发[2020] 1183号《省发展改革委关于江苏电网2020—2022年输配电价和销售电价有关事项的通知»[EB/OL]. [2020-11-03]. http://fzggw.jiangsu.gov.cn/art/2020/11/3/art_284_9556483.html. |
Jiangsu Development & Reform Commission. Notice of Jiangsu Provincial Development and Reform Commission on issues related to transmission and distribution price and sales price of Jiangsu power grid in 2020—2022[EB/OL]. [2020-11-03].http://fzggw.jiangsu.gov.cn/art/2020/11/3/art_284_9556483.html. |
[1] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[2] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[3] | Qi XIA, Yang HE, Yujie XU, Haisheng CHEN, Jianqiang DENG. Matching performance between the trigeneration of an adiabatic compressed air energy storage system and load [J]. Energy Storage Science and Technology, 2021, 10(5): 1494-1502. |
[4] | Dingzhang GUO, Zhao YIN, Xuezhi ZHOU, Yujie XU, Yong SHENG, Wenhui SUO, Haisheng CHEN. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. |
[5] | Shenghui ZHOU, Yang HE, Haisheng CHEN, Yujie XU, Jianqiang DENG. Using an ejector to intensify the charging process of a compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1503-1513. |
[6] | Yang LI, Xinjing ZHANG, Jianfei SONG, Xiaoyu LI, Huan GUO, Yujie XU, Haisheng CHEN. Dynamic regulation and control of the discharge process in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523. |
[7] | Xing WANG, Wen LI, Yangli ZHU, Zhitao ZUO, Haisheng CHEN. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine [J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. |
[8] | Ran XU, Zhitao ZUO, Ao LI, Xia WANG, Ming CHEN, Haisheng CHEN. Water evolution characteristics of piston compressors under varying operating conditions based on the moisture separation coefficient [J]. Energy Storage Science and Technology, 2021, 10(5): 1556-1564. |
[9] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[10] | Han ZHANG, Liang WANG, Xipeng LIN, Haisheng CHEN. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle [J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805. |
[11] | Lexuan LI, Yujie XU, Zhao YIN, Huan GUO, Xianrong ZHANG, Haisheng CHEN, Xuezhi ZHOU. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. |
[12] | Xiaolu WANG, Huan GUO, Hualiang ZHANG, Yujie XU, Yingjun LIU, Haisheng CHEN. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants [J]. Energy Storage Science and Technology, 2021, 10(2): 598-610. |
[13] | Zhongming JIANG, Jing GUO, Dong TANG. A thermodynamic model of compressed humid air within an underground rock cavern for compressed air energy storage [J]. Energy Storage Science and Technology, 2021, 10(2): 638-646. |
[14] | Fa WAN, Zhongming JIANG, Dong TANG. The influence of CAES reservoir design parameters on thermodynamic properties [J]. Energy Storage Science and Technology, 2021, 10(1): 370-378. |
[15] | Lei HOU, Zichi WANG, Yingchao LI, Saihao WANG, Yajie ZHANG, Yusen ZHANG. Analysis and multi-objective optimization of CAES system [J]. Energy Storage Science and Technology, 2021, 10(1): 379-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||