Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1482-1491.doi: 10.19799/j.cnki.2095-4239.2021.0631
• Energy Storage System and Engineering • Previous Articles Next Articles
Hao LI(), Chang LIU, Bo MIAO, Jing ZHANG
Received:
2021-11-30
Revised:
2021-12-15
Online:
2022-05-05
Published:
2022-05-07
Contact:
Hao LI
E-mail:lihao@epri.sgcc.com.cn
CLC Number:
Hao LI, Chang LIU, Bo MIAO, Jing ZHANG. Coordinative optimal dispatch of multi-park integrated energy system considering complementary cooling, heating and power and energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(5): 1482-1491.
1 | YANG W T, LIU W J, CHUNG C Y, et al. Coordinated planning strategy for integrated energy systems in a district energy sector[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1807-1819. |
2 | 韦古强, 胡从川, 刘乙学, 等. 基于液化空气储能的综合能源系统经济性分析[J]. 储能科学与技术, 2021, 10(6): 2403-2410. |
WEI G Q, HU C C, LIU Y X, et al. Economic analysis of integrated energy system based on liquid air energy storage[J]. Energy Storage Science and Technology, 2021, 10(6): 2403-2410. | |
3 | 刘涤尘, 马恒瑞, 王波, 等. 含冷热电联供及储能的区域综合能源系统运行优化[J]. 电力系统自动化, 2018, 42(4): 113-120, 141. |
LIU D C, MA H R, WANG B, et al. Operation optimization of regional integrated energy system with CCHP and energy storage system[J]. Automation of Electric Power Systems, 2018, 42(4): 113-120, 141. | |
4 | 周亦洲, 孙国强, 黄文进, 等. 多区域虚拟电厂综合能源协调调度优化模型[J]. 中国电机工程学报, 2017, 37(23): 6780-6790, 7069. |
ZHOU Y Z, SUN G Q, HUANG W J, et al. Optimized multi-regional integrated energy coordinated scheduling of a virtual power plant[J]. Proceedings of the CSEE, 2017, 37(23): 6780-6790, 7069. | |
5 | FAN H, YUAN Q Q, CHENG H Z. Multi-objective stochastic optimal operation of a grid-connected microgrid considering an energy storage system[J]. Applied Sciences, 2018, 8(12): 2560. |
6 | MARTÍNEZ CESEÑA E A, MANCARELLA P. Energy systems integration in smart districts: Robust optimisation of multi-energy flows in integrated electricity, heat and gas networks[J]. IEEE Transactions on Smart Grid, 2018, 10(1): 1122-1131. |
7 | 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27. |
LIU Q, ZHAI J W, ZHANG Zongchang, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1-27. | |
8 | 蔡新雷, 崔艳林, 董锴, 等. 基于改进K-means和MADDPG算法的风储联合系统日前优化调度方法[J]. 储能科学与技术, 2021, 10(6): 2200-2208. |
CAI X L, CUI Y L, DONG K, et al. Day-ahead optimal scheduling approach of wind-storage joint system based on improved K-means and MADDPG algorithm[J]. Energy Storage Science and Technology, 2021, 10(6): 2200-2208. | |
9 | 聂欢欢, 张家琦, 陈颖, 等. 基于双层强化学习方法的多能园区实时经济调度[J]. 电网技术, 2021, 45(4): 1330-1336. |
NIE H H, ZHANG J Q, CHEN Y, et al. Real-time economic dispatch of community integrated energy system based on a double-layer reinforcement learning method[J]. Power System Technology, 2021, 45(4): 1330-1336. | |
10 | 刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44(10): 3794-3803. |
LIU J F, CHEN J L, WANG X S, et al. Energy management and optimization of multi-energy grid based on deep reinforcement learning[J]. Power System Technology, 2020, 44(10): 3794-3803. | |
11 | WANG Y L, WANG Y D, HUANG Y J, et al. Optimal scheduling of the regional integrated energy system considering economy and environment[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4): 1939-1949. |
12 | LIN S L, SONG W J, FENG Z P, et al. Energy management strategy and capacity optimization for CCHP system integrated with electric-thermal hybrid energy storage system[J]. International Journal of Energy Research, 2020, 44(2): 1125-1139. |
13 | 杨挺, 赵黎媛, 刘亚闯, 等. 基于深度强化学习的综合能源系统动态经济调度[J]. 电力系统自动化, 2021, 45(5): 39-47. |
YANG T, ZHAO L Y, LIU Y C, et al. Dynamic economic dispatch for integrated energy system based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(5): 39-47. | |
14 | 彭刘阳, 孙元章, 徐箭, 等. 基于深度强化学习的自适应不确定性经济调度[J]. 电力系统自动化, 2020, 44(9): 33-42. |
PENG L Y, SUN Y Z, XU J, et al. Self-adaptive uncertainty economic dispatch based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2020, 44(9): 33-42. |
[1] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[2] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[3] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[4] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[5] | Jianlin LI, Zedong ZHANG, Yaxin LI, Yi ZHOU, Yunli YUE. Research on key technologies of mobile energy storage system under the target of carbon neutrality [J]. Energy Storage Science and Technology, 2022, 11(5): 1523-1536. |
[6] | Fulin FAN, Junhui LI, CAMPOS-GAONA David, Gangui YAN. Energy storage-friendly frequency response service markets: The UK perspective [J]. Energy Storage Science and Technology, 2022, 11(4): 1278-1288. |
[7] | Bin GUO, Jie XING, Fei YAO, Xiaomin JING. Optimal configuration of user-side hybrid energy storage based on bi-level programming model [J]. Energy Storage Science and Technology, 2022, 11(2): 615-622. |
[8] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[9] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[10] | Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. |
[11] | Weicheng SHEN, Wenxi ZHEN, Chong SHAO, Qi XIE. Coordinated fault ride through strategy for doubly fed induction generator using a superconducting magnetic energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 136-146. |
[12] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[13] | Xinlei CAI, Yanlin Cui, Kai DONG, Zijie MENG, Yuan PAN, Zhenfan YU, Jixing WANG, Xiangzhan MENG, Yang YU. Day-ahead optimal scheduling approach of wind-storage joint system based on improved K-means and MADDPG algorithm [J]. Energy Storage Science and Technology, 2021, 10(6): 2200-2208. |
[14] | Delong ZHANG, Saif MUBAARAK, Siyu JIANG, Longze WANG, Jinxin LIU, Yongcong CHEN, Meicheng LI. Optimal allocation method of energy storage in PV station based on probabilistic power flow [J]. Energy Storage Science and Technology, 2021, 10(6): 2244-2251. |
[15] | Huan ZHU, Guojing LIU, Xing ZHANG, Fen YUE, Zhenhua YU. Policy and economic comparison of natural gas power generation and battery energy storage in peak regulation [J]. Energy Storage Science and Technology, 2021, 10(6): 2392-2402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||