1 |
吴学红, 翟亚妨, 姜文涛, 等. 套管式相变蓄热器强化传热研究[J]. 可再生能源, 2016, 34(7): 983-989.
|
|
WU X H, ZHAI Y F, JIANG W T, et al. Heat transfer enhancement for sleeve thermal energy storage exchanger using phase change materials[J]. Renewable Energy Resources, 2016, 34(7): 983-989.
|
2 |
顾煜炯, 张晨, 耿直, 等. 新型套管式相变蓄热器结构优化及传热研究[J]. 热力发电, 2018, 47(1): 33-37.
|
|
GU Y J, ZHANG C, GENG Z, et al. Structure optimization and heat transfer research for new type casing phase change heat sequencer[J]. Thermal Power Generation, 2018, 47(1): 33-37.
|
3 |
BAZAI H, MOGHIMI M A, MOHAMMED H I, et al. Numerical study of circular-elliptical double-pipe thermal energy storage systems[J]. Journal of Energy Storage, 2020, 30: doi: 10.1016/j.est.2020.101440.
|
4 |
SAFARI V, ABOLGHASEMI H, DARVISHVAND L, et al. Thermal performance investigation of concentric and eccentric shell and tube heat exchangers with different fin configurations containing phase change material[J]. Journal of Energy Storage, 2021, 37: doi: 10.1016/j.est.2021.102458.
|
5 |
ALNAKEEB M A, ABDEL SALAM M A, HASSAB M A. Eccentricity optimization of an inner flat-tube double-pipe latent-heat thermal energy storage unit[J]. Case Studies in Thermal Engineering, 2021, 25: doi: 10.1016/j.csite.2021.100969.
|
6 |
PAHAMLI Y, HOSSEINI M J, RANJBAR A A, et al. Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers[J]. Renewable Energy, 2016, 97: 344-357.
|
7 |
CAO X L, YUAN Y P, XIANG B, et al. Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit[J]. Sustainable Cities and Society, 2018, 38: 571-581.
|
8 |
YAZICI M Y, AVCI M, AYDIN O, et al. On the effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM[J]. Applied Thermal Engineering, 2014, 64(1/2): 1-9.
|
9 |
KADIVAR M R, MOGHIMI M A, SAPIN P, et al. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.101030.
|
10 |
DARZI A R, FARHADI M, SEDIGHI K. Numerical study of melting inside concentric and eccentric horizontal annulus[J]. Applied Mathematical Modelling, 2012, 36(9): 4080-4086.
|
11 |
YAGCI O K, AVCI M, AYDIN O. Melting and solidification of PCM in a tube-in-shell unit: Effect of fin edge lengths' ratio[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100802.
|
12 |
KUMAR R, VERMA P. An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on melting behaviour of lauric acid in a horizontal tube-in-shell storage unit[J]. Journal of Energy Storage, 2020, 30: doi: 10.1016/j.est.2020.101396.
|
13 |
MAHDI J M, LOHRASBI S, GANJI D D, et al. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 124: 663-676.
|
14 |
夏天亮. 套管式相变储能单元肋片强化传热研究[D]. 扬州: 扬州大学, 2021.
|
|
XIA T L. Research of heat transfer enhancement by fins in the tube-and-tube phase change energy storage unit[D]. Yangzhou: Yangzhou University, 2021.
|
15 |
ZHANG S Q, PU L, XU L L, et al. Melting performance analysis of phase change materials in different finned thermal energy storage[J]. Applied Thermal Engineering, 2020, 176: 15425.
|
16 |
HOSSEINI M J, RANJBAR A A, RAHIMI M, et al. Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems[J]. Energy and Buildings, 2015, 99: 263-272.
|
17 |
朱玉熙. 翅片管相变储热系统数值模拟及结构优化[D]. 济南: 山东大学, 2021.
|
|
ZHU Y X. Numerical simulation and structural optimization of latent heat storage system with fins[D]. Jinan: Shandong University, 2021.
|
18 |
PU L, ZHANG S Q, XU L L, et al. Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 166: doi: 10.1016/j.applthermaleng.2019.114753.
|
19 |
ZHANG C B, LI J, CHEN Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: doi: 10.1016/j.apenergy.2019.114102.
|
20 |
SHEIKHOLESLAMI M, LOHRASBI S, GANJI D D. Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method[J]. Applied Thermal Engineering, 2016, 107: 154-166.
|
21 |
李杰. 树状肋储能换热器的固液相变传热特性研究及其结构优化[D]. 南京: 东南大学, 2019.
|
|
LI J. Study on the solid-liquid phase change heat transfer characteristics in thermal energy storage heat exchanger with tree-shaped fin and its structural optimization[D]. Nanjing: Southeast University, 2019.
|
22 |
SCIACOVELLI A, GAGLIARDI F, VERDA V. Maximization of performance of a PCM latent heat storage system with innovative fins[J]. Applied Energy, 2015, 137: 707-715.
|
23 |
柯彬彬. 圆管外石蜡相变传热过程数值模拟及传热强化[D]. 镇江: 江苏大学, 2016.
|
|
KE B B. Numerical simulation and heat transfer enhancement of paraffin phase change heat transefer process at outer tube[D]. Zhenjiang: Jiangsu University, 2016.
|
24 |
RABIENATAJ DARZI A A, JOURABIAN M, FARHADI M. Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus[J]. Energy Conversion and Management, 2016, 118: 253-263.
|