Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 383-397.doi: 10.19799/j.cnki.2095-4239.2022.0530
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yanqi LIU1,2(), Zhaohai SONG1,2, Tian HE2,3, Zuoqiang DAI2,3, Zongmin ZHENG1,2,3()
Received:
2022-09-18
Revised:
2022-10-22
Online:
2023-02-05
Published:
2023-02-24
Contact:
Zongmin ZHENG
E-mail:Liumemeya@163.com;zmzheng@qdu.edu.cn
CLC Number:
Yanqi LIU, Zhaohai SONG, Tian HE, Zuoqiang DAI, Zongmin ZHENG. Research progress on integrated air electrodes for rechargeable Zn-air batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 383-397.
1 | ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): doi: 10.1021/acs.chemrev.2c00289.. |
2 | ZHOU T P, ZHANG N, WU C Z, et al. Surface/interface nanoengineering for rechargeable Zn-air batteries[J]. Energy & Environmental Science, 2020, 13(4): 1132-1153. |
3 | LI X M, LIN Z Z, CHENG L R, et al. Layered MoSi2N4 as electrode material of Zn-air battery[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2022, 16(5): doi: 10.1002/pssr.202200007. |
4 | XU L, ZHOU W G, WANG X H, et al. Metal-air battery system design and electrical performance analysis[M]//Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, 2022: 743-750. |
5 | LEE H, LISTYAWAN T A, PARK N, et al. Effect of Zn addition on electrochemical performance of Al-air battery[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(2): 505-509. |
6 | 许可, 王保国. 锌-空气电池空气电极研究进展[J]. 储能科学与技术, 2017, 6(5): 924-940. |
XU K, WANG B G. A review of air electrodes for zinc air batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 924-940. | |
7 | HUANG D Y, CAO F Y, YING T, et al. High-energy-capacity metal-air battery based on a magnetron-sputtered Mg-Al anode[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230874. |
8 | GU P, XU Y X, ZHAO Y F, et al. Electrocatalysis of rechargeable non-lithium metal-air batteries[J]. Advanced Materials Interfaces, 2017, 4(19): doi: 10.1002/admi.201700589. |
9 | LIU X, JIAO H D, WANG M Y, et al. Current progresses and future prospects on aluminium-air batteries[J]. International Materials Reviews, 2022, 67(7): 734-764. |
10 | DEYAB M A, MOHSEN Q. Improved battery capacity and cycle life in iron-air batteries with ionic liquid[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110729. |
11 | SUN W, KÜPERS V, WANG F, et al. A non-alkaline electrolyte for electrically rechargeable zinc-air batteries with long-term operation stability in ambient air[J]. Angewandte Chemie (International Ed in English), 2022, 61(38): doi: 10.1002/anie.202207353. |
12 | CHEN G D, XU Y Y, HUANG L, et al. Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Journal of Energy Chemistry, 2021, 55: 183-189. |
13 | PENG Y M, LAI C G, ZHANG M, et al. Zn-Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery[J]. Journal of Power Sources, 2022, 526: doi: 10.1016/j.jpowsour.2022.231173. |
14 | 邓晓华, 江柱, 陈超, 等. 沸石咪唑基金属有机框架及其衍生材料用作锌-空气电池高效阴极催化剂的最新进展[J]. 储能科学与技术, 2022, 11(3): 964-981. |
DENG X H, JIANG Z, CHEN C, et al. Recent advances in zeolitic imidazolium-based metal-organic frameworks(ZIFs)and their derivatives as efficient cathode catalysts for zinc-air batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 964-981. | |
15 | 翁晓琳, 刘佩佩, 刘江, 等. 锌空气电池研究进展[J]. 电源技术, 2019, 43(4): 716-719. |
WENG X L, LIU P P, LIU J, et al. Research progress of zinc-air batteries[J]. Chinese Journal of Power Sources, 2019, 43(4): 716-719. | |
16 | ZHANG J, ZHOU Q X, TANG Y W, et al. Zinc-air batteries: Are they ready for prime time?[J]. Chemical Science, 2019, 10(39): 8924-8929. |
17 | LI Y G, DAI H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15): 5257-5275. |
18 | SUN W, MA M M, ZHU M G, et al. Chemical buffer layer enabled highly reversible Zn anode for deeply discharging and long-life Zn-air battery[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022, 18(9): doi: 10.1002/smll.202106604. |
19 | ZHAO Z X, YU W T, SHANG W X, et al. Revealing the effects of conductive carbon materials on the cycling stability of rechargeable Zn-air batteries[J]. International Journal of Energy Research, 2022, 46(6): 7694-7703. |
20 | LI X F, LIU Y J, CHEN H B, et al. Rechargeable Zn-air batteries with outstanding cycling stability enabled by ultrafine FeNi nanoparticles-encapsulated N-doped carbon nanosheets as a bifunctional electrocatalyst[J]. Nano Letters, 2021, 21(7): 3098-3105. |
21 | JIN H H, KOU Z K, CAI W W, et al. P-Fe bond oxygen reduction catalysts toward high-efficiency metal-air batteries and fuel cells[J]. Journal of Materials Chemistry A, 2020, 8(18): 9121-9127. |
22 | PENG Z, WANG H T, XIA X C, et al. Integration of CoFe alloys and Fe/Fe3C nanoparticles into N-doped carbon nanosheets as dual catalytic active sites to promote the oxygen electrocatalysis of Zn-air batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9009-9016. |
23 | XU Z Y, YAN L, SHEN J L, et al. Hierarchical mesoporous S, N-codoped carbon nanostructures composed of Co/Co-Cu-S/carbon nanoplate arrays on carbon nanofibers as a self-supported air cathode for long-lasting rechargeable Zn-air batteries[J]. Science China Technological Sciences, 2022, 65(3): 693-703. |
24 | NIU Y L, GONG S Q, LIU X, et al. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries[J]. eScience, 2022, 2(5): 546-556. |
25 | 朱子岳, 符冬菊, 陈建军, 等. 锌空气电池非贵金属双功能阴极催化剂研究进展[J]. 储能科学与技术, 2020, 9(5): 1489-1496. |
ZHU Z Y, FU D J, CHEN J J, et al. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. | |
26 | WANG P C, JIA T, WANG B G. Review—recent advance in self-supported electrocatalysts for rechargeable zinc-air batteries[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba96e. |
27 | WU K Z, ZHANG L, YUAN Y F, et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(32): doi: 10.1002/adma.202002292. |
28 | SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(3): doi: 10.1002/adma.201806326. |
29 | XU Z A, ZHU J, SHAO J Z, et al. Atomically dispersed cobalt in core-shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries[J]. Energy Storage Materials, 2022, 47: 365-375. |
30 | XU N N, ZHANG Y X, WANG M, et al. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane[J]. Nano Energy, 2019, 65: doi: 10.1016/j.nanoen.2019.104021. |
31 | LIU S J, AMIINU I S, LIU X B, et al. Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc-air batteries[J]. Chemical Engineering Journal, 2018, 342: 163-170. |
32 | 陈志城, 李宗旭, 蔡玲, 等. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
CHEN Z C, LI Z X, CAI L, et al. Development status and future prospects of flexible metal-air batteries[J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. | |
33 | WANG Y J, CAO Q H, GUAN C, et al. Recent advances on self-supported arrayed bifunctional oxygen electrocatalysts for flexible solid-state Zn-air batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(33): doi: 10.1002/smll.202002902. |
34 | YAN X X, HA Y, WU R B. Binder-free air electrodes for rechargeable zinc-air batteries: Recent progress and future perspectives[J]. Small Methods, 2021, 5(4): doi: 10.1002/smtd.202000827. |
35 | WU J K, LIU B, FAN X Y, et al. Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes[J]. Carbon Energy, 2020, 2(3): 370-386. |
36 | LI M, CHEN S H, LI B, et al. In situ growing N and O co-doped helical carbon nanotubes encapsulated with CoFe alloy as tri-functional electrocatalyst applied in Zn-air batteries driving water splitting[J]. Electrochimica Acta, 2021, 388: doi: 10.1016/j.electacta.2021.138587. |
37 | YAN S F, LUO C, ZHANG H, et al. In-Situ derived Co1- xS@nitrogen-doped carbon nanoneedle array as a bifunctional electrocatalyst for flexible zinc-air battery[J]. Journal of Electroanalytical Chemistry, 2021, 900: doi: 10.1016/j.jelechem.2021.115711. |
38 | ZHENG X Y, MOHAMMADI N, MORENO ZURIA A, et al. Advanced zinc-air batteries with free-standing hierarchical nanostructures of the air cathode for portable applications[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61374-61385. |
39 | JI H Q, WANG M F, LIU S S, et al. Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries[J]. Electrochimica Acta, 2020, 334: doi: 10.1016/j.electacta.2019.135562. |
40 | GUO J, KANG L Q, LU X K, et al. Self-activated cathode substrates in rechargeable zinc-air batteries[J]. Energy Storage Materials, 2021, 35: 530-537. |
41 | GAO Y. Prediction the differences of permeability between carbon fiber paper and carbon fiber cloth in PEM fuel cells[C]//Proceedings of ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology Collocated With ASME 2011 5th International Conference on Energy Sustainability, August 7-10, 2011, Washington, DC, USA. 2012: 789-798. |
42 | WANG Y, WANG C Y, CHEN K S. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2007, 52(12): 3965-3975. |
43 | LIU X Z, TANG T, JIANG W J, et al. Fe-doped Co3O4 polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc-air batteries[J]. Chemical Communications (Cambridge, England), 2020, 56(40): 5374-5377. |
44 | JANANI G, SURENDRAN S, CHOI H, et al. In situ grown CoMn2 O4 3D-tetragons on carbon cloth: Flexible electrodes for efficient rechargeable zinc-air battery powered water splitting systems[J]. Small, 2021, 17(47): doi: 10.1002/smll.202103613. |
45 | LI S X, ZHANG H, WU L, et al. Vacancy-engineered CeO2/Co heterostructure anchored on the nitrogen-doped porous carbon nanosheet arrays vertically grown on carbon cloth as an integrated cathode for the oxygen reduction reaction of rechargeable Zn-air battery[J]. Journal of Materials Chemistry A, 2022, 10(18): 9858-9868. |
46 | YAN L, XU Z Y, LIU X N, et al. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn-air batteries and self-powered water splitting[J]. Chemical Engineering Journal, 2022, 446: doi: 10.1016/j.cej.2022.137049. |
47 | LU Q, ZOU X H, LIAO K M, et al. Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-air batteries[J]. Carbon Energy, 2020, 2(3): 461-471. |
48 | LI F, LIU Y L, WANG G G, et al. The design of flower-like C-MnO2 nanosheets on carbon cloth toward high-performance flexible zinc-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(15): 9675-9684. |
49 | CHEN L L, SONG Z H, LI Z, et al. Integrated CoO nanoparticles@ porous carbon nanosheets arrays on carbon cloth as cathode for rechargeable Zn-air batteries[J]. Journal of Alloys and Compounds, 2022, 894: doi: 10.1016/j.jallcom.2021.162456. |
50 | LAI C L, LI H M, SHENG Y, et al. 3D spatial combination of CN vacancy-mediated NiFe-PBA with N-doped carbon nanofibers network toward free-standing bifunctional electrode for Zn-air batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(11): doi: 10.1002/advs.202105925. |
51 | LI Z Y, HAN W J, JIA P, et al. Co3O4 nanoneedle array grown on carbon fiber paper for air cathodes towards flexible and rechargeable Zn-air batteries[J]. Nanomaterials (Basel, Switzerland), 2021, 11(12): 3321. |
52 | ZHENG X J, CAO X C, ZENG K, et al. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(4): doi: 10.1002/smll.202006183. |
53 | YANG L P, ZHANG X, YU L X, et al. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 H[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(5): doi: 10.1002/adma.202105410. |
54 | ZOU S B, LI J J, WU X Q, et al. Electrospun N-doped carbon nanofibers decorated with Fe3C nanoparticles as highly active oxygen reduction electrocatalysts for rechargeable Zn-air batteries[J]. Chemical Physics Letters, 2021, 778: doi: 10.1016/j.cplett.2021.138769. |
55 | WANG Y Y, LI Z G, ZHANG P, et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries[J]. Nano Energy, 2021, 87: doi: 10.1016/j.nanoen.2021.106147. |
56 | WANG T, KUNIMOTO M, MORI T, et al. Carbonate formation on carbon electrode in rechargeable zinc-air battery revealed by in situ Raman measurements[J]. Journal of Power Sources, 2022, 533: doi: 10.1016/j.jpowsour.2022.231237. |
57 | ZHENG W R, LIU M J, LEE L Y S. Best practices in using foam-type electrodes for electrocatalytic performance benchmark[J]. ACS Energy Letters, 2020, 5(10): 3260-3264. |
58 | XU N N, WILSON J A, WANG Y D, et al. Flexible self-supported bi-metal electrode as a highly stable carbon-and binder-free cathode for large-scale solid-state zinc-air batteries[J]. Applied Catalysis B: Environmental, 2020, 272: doi: 10.1016/j.apcatb.2020.118953. |
59 | TAN P, CHEN B, XU H R, et al. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries[J]. Applied Catalysis B: Environmental, 2019, 241: 104-112. |
60 | YE J H, ZHAI X W, CHEN L, et al. Oxygen vacancies enriched nickel cobalt based nanoflower cathodes: Mechanism and application of the enhanced energy storage[J]. Journal of Energy Chemistry, 2021, 62: 252-261. |
61 | LV X W, LIU Y P, TIAN W W, et al. Aluminum and phosphorus codoped "superaerophobic" Co3O4 microspheres for highly efficient electrochemical water splitting and Zn-air batteries[J]. Journal of Energy Chemistry, 2020, 50: 324-331. |
62 | HAN X T, LI N N, XIONG P X, et al. Rhenium induced electronic structure modulation of Ni3S2/N-doped graphene for efficient trifunctional electrocatalysis[J]. Composites Part B: Engineering, 2022, 234: doi: 10.1016/j.compositesb.2022.109670. |
63 | HUANG K, GUO S, WANG R Y, et al. Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes[J]. Chinese Journal of Catalysis, 2020, 41(11): 1754-1760. |
64 | HOU C C, ZOU L L, WANG Y, et al. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(48): 21360-21366. |
65 | WU M J, ZHANG G X, CHEN N, et al. A self-supported electrode as a high-performance binder-and carbon-free cathode for rechargeable hybrid zinc batteries[J]. Energy Storage Materials, 2020, 24: 272-280. |
66 | JADHAV A R, PUGUAN J M C, KIM H. Microwave-assisted synthesis of a stainless steel mesh-supported Co3O4 microrod array as a highly efficient catalyst for electrochemical water oxidation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 11069-11079. |
67 | LIU Y Q, SONG Z H, LI Z, et al. Standing NiFe LDH nanosheets on stainless steel fibers felt: A synergistic impact on the oxygen evolution reaction (OER) for the water splitting[J]. Catalysis Communications, 2022, 164: doi: 10.1016/j.catcom.2022.106425. |
68 | CHOWDHURY A, LEE K C, WEI LIM M S, et al. The zinc-air battery performance with Ni-doped MnO2 electrodes[J]. Processes, 2021, 9(7): 1087. |
69 | CHANG C C, LEE Y C, LIAO H J, et al. Flexible hybrid Zn-Ag/air battery with long cycle life[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2860-2866. |
70 | WU M J, ZHANG G X, TONG H, et al. Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery[J]. Nano Energy, 2021, 79: doi: 10.1016/j.nanoen.2020.105409. |
71 | ZHAO Z X, YU W T, SHANG W X, et al. Rigorous assessment of electrochemical rechargeability of alkaline Zn-air batteries[J]. Journal of Power Sources, 2022, 543: doi: 10.1016/j.jpowsour.2022.231844. |
72 | TANG K, HU H B, XIONG Y, et al. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc-air batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(24): doi: 10.1002/anie.202202671. |
73 | SHANG W X, YU W T, MA Y Y, et al. Constructing the triple-phase boundaries of integrated air electrodes for high-performance Zn-air batteries[J]. Advanced Materials Interfaces, 2021, 8(21): doi: 10.1002/admi.202101256. |
74 | YU J, LI B Q, ZHAO C X, et al. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(12): doi: 10.1002/adma.201908488. |
75 | TIAN W W, REN J T, LV X W, et al. A "gas-breathing" integrated air diffusion electrode design with improved oxygen utilization efficiency for high-performance Zn-air batteries[J]. Chemical Engineering Journal, 2022, 431: doi: 10.1016/j.cej.2021.133210. |
76 | WANG M M, MENG Y H, LI K, et al. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer[J]. eScience, 2022, 2(5): 509-517. |
77 | 尤祥, 何翠萍, 陈远亮, 等. 锌-空气电池的枝晶生长机理及抑制[J/OL].中国有色金属学报. [2022-12-28]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220612.1429.001.html. |
YOU X, HE C P, CHEN Y L, et al. Mechanism and inhibition of dendrite growth in zinc-air batteries[J/OL]. The Chinese Journal of Nonferrous Metals. [2022-12-28]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220612.1429.001.html. | |
78 | WANG K L, ZUO Y Y, PEI P C, et al. Zn-Ni reaction in the alkaline zinc-air battery using a nickel-supported air electrode[J]. Materials Today Energy, 2021, 21: doi: 10.1016/j.mtener.2021.100823. |
[1] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[2] | Yajie LI, Geng ZHANG, Liting SHA, Wei ZHAO, Bin CHEN, Da WANG, Jia YU, Siqi SHI. Phase-field simulation of dendrite growth in rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 929-938. |
[3] | Mingchang HU, Xueqing ZHOU, Xueyan HUANG, Jianjun XUE. Solvent-free fabrication of zinc-air electrodes and their battery performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2090-2096. |
[4] | CHEN Cheng1, LING Shigang2, GUO Xiangxin1, LI Hong2. Space charge layer effect in rechargeable solid state lithium batteries: principle and perspective#br# [J]. Energy Storage Science and Technology, 2016, 5(5): 668-677. |
[5] | PENG Jiayue, LIU Yali, HUANG Jie, LI Hong. Fundamental scientific aspects of lithium ion batteries(Ⅺ)--Lithium air and lithium sulfur batteries [J]. Energy Storage Science and Technology, 2014, 3(5): 526-543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||