1 |
YE Q, HU J, CHENG P, et al. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery[J]. Journal of Power Sources, 2015, 296: 352-364.
|
2 |
DELGADO N M, MONTEIRO R, CRUZ J, et al. Shunt currents in vanadium redox flow batteries-a parametric and optimization study[J]. Electrochimica Acta, 2022, 403: doi: 10.1016/j.electacta.2021.139667
|
3 |
SUN J W, SHI D Q, ZHONG H X, et al. Investigations on the self-discharge process in vanadium flow battery[J]. Journal of Power Sources, 2015, 294: 562-568.
|
4 |
YOU X, YE Q, CHENG P. The dependence of mass transfer coefficient on the electrolyte velocity in carbon felt electrodes: Determination and validation[J]. Journal of the Electrochemical Society, 2017, 164(11): E3386-E3394.
|
5 |
SONG Y X, LI X R, YAN C W, et al. Uncovering ionic conductivity impact towards high power vanadium flow battery design and operation[J]. Journal of Power Sources, 2020, 480: doi: 10.1016/j.jpowsour.2020.229141.
|
6 |
王瑄, 叶强. 全钒液流电池电堆局部供液不足导致副反应加剧的现象[J]. 储能科学与技术, 2022, 11(5): 1455-1467.
|
|
WANG X, YE Q. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack[J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467.
|
7 |
KNEHR K W, AGAR E, DENNISON C R, et al. A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane[J]. Journal of the Electrochemical Society, 2012, 159(9): A1446-A1459.
|
8 |
WANG Y T, SMITH K C. Numerical investigation of convective transport in redox flow battery tanks: Using baffles to increase utilization[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019.100840.
|