1 |
王皓, 张舒淳, 李维展, 等. 储能参与电力系统应用研究综述[J]. 电工技术, 2020(3): 21-24, 27.
|
|
WANG H, ZHANG S C, LI W Z, et al. Survey of energy storage used in power system application[J]. Electric Engineering, 2020(3): 21-24, 27.
|
2 |
肖定垚, 王承民, 衣涛, 等. 压缩空气蓄能(CAES)系统综述[J]. 电网与清洁能源, 2014, 30(1): 75-80.
|
|
XIAO D Y, WANG C M, YI T, et al. Review of compressed air energy storage system[J]. Power System and Clean Energy, 2014, 30(1): 75-80.
|
3 |
路唱, 何青. 压缩空气储能技术最新研究进展[J]. 电力与能源, 2018, 39(6): 861-866.
|
|
LU C, HE Q. Recent research progress in compressed air energy storage technology[J]. Power & Energy, 2018, 39(6): 861-866.
|
4 |
门家凯, 邱建龙, 陈向勇. 基于先进绝热压缩空气储能的区域综合能源系统优化策略[J]. 南京信息工程大学学报(自然科学版), 2022, 14(3): 361-367.
|
|
MEN J K, QIU J L, CHEN X Y. Integrated energy optimization strategy based on advanced adiabatic compressed air energy storage[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2022, 14(3): 361-367.
|
5 |
LI R X, WANG H R, ZHANG H R. Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage[J]. Renewable Energy, 2019, 138: 326-339.
|
6 |
LU C Y, WANG J J, YAN R J. Multi-objective optimization of combined cooling, heating and power system considering the collaboration of thermal energy storage with load uncertainties[J]. Journal of Energy Storage, 2021, 40: 102819.
|
7 |
LI Y L, WANG X, LI D C, et al. A trigeneration system based on compressed air and thermal energy storage[J]. Applied Energy, 2012, 99: 316-323.
|
8 |
LIU J L, WANG J H. A comparative research of two adiabatic compressed air energy storage systems[J]. Energy Conversion and Management, 2016, 108: 566-578.
|
9 |
CAO Z, XIA Q, HE Y, et al. Discharging strategy of adiabatic compressed air energy storage system based on variable load and economic analysis[J]. Journal of Energy Storage, 2022, 51: 104403.
|
10 |
JIANG R H, YIN H B, CHEN B M, et al. Multi-objective assessment, optimization and application of a grid-connected combined cooling, heating and power system with compressed air energy storage and hybrid refrigeration[J]. Energy Conversion and Management, 2018, 174: 453-464.
|
11 |
蔡悠然, 李景翠, 刘辉, 等. 压缩空气储能与吸收式制冷联合运行系统及其分析[J]. 中国电机工程学报, 2018, 38(1): 186-194, 355.
|
|
CAI Y R, LI J C, LIU H, et al. Exergy analysis of compressed air energy storage system combined with absorption chiller[J]. Proceedings of the CSEE, 2018, 38(1): 186-194, 355.
|
12 |
RAZMI A, SOLTANI M, TORABI M. Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis[J]. Energy Conversion and Management, 2019, 195: 1199-1211.
|
13 |
ZHANG N, CAI R X. Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration[J]. Energy Conversion and Management, 2002, 43(9-12): 1323-1337.
|
14 |
GUO C, XU Y J, GUO H, et al. Comprehensive exergy analysis of the dynamic process of compressed air energy storage system with low-temperature thermal energy storage[J]. Applied Thermal Engineering, 2019, 147: 684-693.
|
15 |
CAO Z, ZHOU S H, HE Y, et al. Numerical study on adiabatic compressed air energy storage system with only one ejector alongside final stage compression[J]. Applied Thermal Engineering, 2022, 216: 119071.
|
16 |
韩中合, 刘士名, 周权, 等. 蓄热式AA-CAES电站性能计算及经济性分析[J]. 华北电力大学学报(自然科学版), 2015, 42(5): 87-93.
|
|
HAN Z H, LIU S M, ZHOU Q, et al. Performance calculations and economic analysis of regenerative AA-CAES power plant[J]. Journal of North China Electric Power University (Natural Science Edition), 2015, 42(5): 87-93.
|
17 |
HE Y, ZHOU S H, XU Y J, et al. The influence of charging process on trigenerative performance of compressed air energy storage system[J]. International Journal of Energy Research, 2021, 45(12): 17133-17145.
|