Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3265-3274.doi: 10.19799/j.cnki.2095-4239.2023.0430
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Chao XING1(), Jiajie XIAO2, Peiqiang LI2(), Xinze XI1, Zhiyu MAO3, Qi GUO2, Chunming TU2
Received:
2023-06-25
Revised:
2023-07-15
Online:
2023-10-05
Published:
2023-10-09
Contact:
Peiqiang LI
E-mail:497336360@qq.com;lpqcs@hotmail.com
CLC Number:
Chao XING, Jiajie XIAO, Peiqiang LI, Xinze XI, Zhiyu MAO, Qi GUO, Chunming TU. Integrated control strategy and economic evaluation of multi-type energy storage for power grid secondary frequency modulation[J]. Energy Storage Science and Technology, 2023, 12(10): 3265-3274.
Table 8
Economic parameters of multi-type battery energy storage"
电池类型 | 锂离子电池 | 铅酸电池 | 镍氢电池 | 超级电容 | 飞轮储能 | 超导磁储能 |
---|---|---|---|---|---|---|
Cpinv/(元/kW) | 9300 | 2790 | 1860 | 1860 | 2170 | 1860 |
Ceinv/(元/kWh) | 9300 | 1860 | 3500 | 12400 | 31000 | 62000 |
Cprep/(元/kW) | 2472.3 | 1152.4 | 1200 | 1860 | 1011.7 | 1860 |
Cerep/(元/kWh) | 9300 | 1 860 | 3500 | 12400 | 31000 | 62000 |
Cpbop/(元/kW) | 620 | 620 | 620 | 620 | 620 | 0 |
Cebop/(元/kWh) | 0 | 0 | 0 | 0 | 0 | 9300 |
Cpom/[元/(kW·a)] | 62 | 62 | 93 | 80.6 | 111.6 | 62 |
Ceom/(元/kWh) | 0.01407 | 0.002479 | 0.01407 | 0.0134 | 0.0134 | 0.0134 |
Cpscr/(元/kW) | 465 | 139.5 | 93 | 93 | 108.5 | 93 |
Cescr/(元/kWh) | 0 | 360 | 0 | 0 | 0 | 0 |
1 | EMRANI A, BERRADA A, BAKHOUYA M. Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant[J]. Renewable Energy, 2022, 183: 12-27. |
2 | 禹海峰, 黄婧杰, 蒋诗谣, 等. 计及储能使用年寿命的风电场整体性储能配置[J]. 电力科学与技术学报, 2022, 37(4): 152-160. |
YU H F, HUANG J J, JIANG S Y, et al. The overall energy storage configuration of wind farms considering the service life of electric energy storage[J]. Journal of Electric Power Science and Technology, 2022, 37(4): 152-160. | |
3 | 马汀山, 王妍, 吕凯, 等. "双碳"目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1): 136-148. |
MA T S, WANG Y, LYU K, et al. Research progress on flexible transformation technology of thermal power unit coupled energy storage under the goal of "double carbon"[J]. Proceedings of the CSEE, 2022, 42(S1): 136-148. | |
4 | 马昱欣, 胡泽春, 刁锐. 新能源场站共享储能提供调频服务的日前优化策略[J]. 电网技术, 2022, 46(10): 3857-3868. |
MA Y X, HU Z C, DIAO R. Day-ahead optimization strategy for shared energy storage of renewable energy power stations to provide frequency regulation service[J]. Power System Technology, 2022, 46(10): 3857-3868. | |
5 | 张江丰, 苏烨, 孙坚栋, 等. 电网侧电化学储能电站AGC控制策略优化及试验分析[J]. 电力科学与技术学报, 2022, 37(2): 173-180. |
ZHANG J F, SU Y, SUN J D, et al. Optimization and test analysis of AGC control strategy for the grid-side electrochemical energy storage power station[J]. Journal of Electric Power Science and Technology, 2022, 37(2): 173-180. | |
6 | 杨海晶, 饶宇飞, 李朝晖, 等. 基于随机模拟和EMD的含风光电力系统AGC调频储能定容[J]. 电力科学与技术学报, 2022, 37(5): 58-65, 99. |
YANG H J, RAO Y F, LI Z H, et al. Based on stochastic simulation and EMD, AGC frequency modulation energy storage capacity of power system with wind and light is fixed[J]. Journal of Electric Power Science and Technology, 2022, 37(5): 58-65, 99. | |
7 | 王育飞, 杨铭诚, 薛花, 等. 计及SOC的电池储能系统一次调频自适应综合控制策略[J]. 电力自动化设备, 2021, 41(10): 192-198, 219. |
WANG Y F, YANG M C, XUE H, et al. Self-adaptive integrated control strategy of battery energy storage system considering SOC for primary frequency regulation[J]. Electric Power Automation Equipment, 2021, 41(10): 192-198, 219. | |
8 | 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115. |
MA Z H, LI X R, TAN Z X, et al. Integrated control of primary frequency regulation considering dead band of energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115. | |
9 | 洪烽, 梁璐, 逄亚蕾, 等. 基于机组实时出力增量预测的火电-飞轮储能系统协同调频控制研究[J/OL]. 中国电机工程学报: 1-14 [2023-06-10]. https://doi.org/10.13334/j.0258-8013.pcsee.222304. |
10 | 张谦, 邓小松, 岳焕展, 等. 计及电池寿命损耗的电动汽车参与能量-调频市场协同优化策略[J]. 电工技术学报, 2022, 37(1): 72-81. |
ZHANG Q, DENG X S, YUE H Z, et al. Coordinated optimization strategy of electric vehicle cluster participating in energy and frequency regulation markets considering battery lifetime degradation[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 72-81. | |
11 | 凌开元, 赵乐冰, 张新松, 等. 基于双储能系统的主动配电网储能配置[J]. 电力自动化设备, 2018, 38(5): 171-176. |
LING K Y, ZHAO L B, ZHANG X S, et al. Storage allocation of active distribution network based on double-storage system[J]. Electric Power Automation Equipment, 2018, 38(5): 171-176. | |
12 | YUAN Y, ZHANG X S, JU P, et al. Applications of battery energy storage system for wind power dispatchability purpose[J]. Electric Power Systems Research, 2012, 93: 54-60. |
13 | 刘鑫, 李欣然, 谭庄熙, 等. 基于不同种类储能电池参与一次调频的最优策略经济性对比[J]. 高电压技术, 2022, 48(4): 1403-1410. |
LIU X, LI X R, TAN Z X, et al. Economic comparison of optimal strategies based on different types of energy storage batteries participating in primary frequency regulation[J]. High Voltage Engineering, 2022, 48(4): 1403-1410. | |
14 | 张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14): 40-48. |
ZHANG Q, LI X R, YANG M, et al. Capacity determination of hybrid energy storage system for smoothing wind power fluctuations with maximum net benefit[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 40-48. | |
15 | 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究[J]. 中国电机工程学报, 2020, 40(8): 2597-2606. |
SUI Y R, LIANG S Y, HUANG D C, et al. Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606. | |
16 | 李建林, 牛萌, 张博越, 等. 电池储能系统机电暂态仿真模型[J]. 电工技术学报, 2018, 33(8): 1911-1918. |
LI J L, NIU M, ZHANG B Y, et al. Simulation model of battery energy storage system in electromechanical transient[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1911-1918. | |
17 | 李若, 李欣然, 谭庄熙, 等. 考虑储能电池参与二次调频的综合控制策略[J]. 电力系统自动化, 2018, 42(8): 74-82. |
LI R, LI X R, TAN Z X, et al. Integrated control strategy considering energy storage battery participating in secondary frequency regulation[J]. Automation of Electric Power Systems, 2018, 42(8): 74-82. | |
18 | 李欣然, 黄际元, 陈远扬, 等. 基于灵敏度分析的储能电池参与二次调频控制策略[J]. 电工技术学报, 2017, 32(12): 224-233. |
LI X R, HUANG J Y, CHEN Y Y, et al. Battery energy storage control strategy in secondary frequency regulation considering its action moment and depth[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 224-233. | |
19 | 黄亚唯, 李欣然, 黄际元, 等. 电池储能电源参与AGC的控制方式分析[J]. 电力系统及其自动化学报, 2017, 29(3): 83-89. |
HUANG Y W, LI X R, HUANG J Y, et al. Analysis of control methods for AGC with battery energy storage system[J]. Proceedings of the CSU-EPSA, 2017, 29(3): 83-89. | |
20 | LIU H, HU Z C, SONG Y H, et al. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3480-3489. |
21 | 王明, 李欣然, 谭绍杰, 等. 考虑经济性的风储联合双应用的储容配置方法[J]. 电力系统及其自动化学报, 2017, 29(2): 7-13. |
WANG M, LI X R, TAN S J, et al. Capacity configuration method of energy storage in wind-ESS coordination considering economic efficiency[J]. Proceedings of the CSU-EPSA, 2017, 29(2): 7-13. | |
22 | LIN L, JIA Y Q, MA M H, et al. Long-term stable operation control method of dual-battery energy storage system for smoothing wind power fluctuations[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106878. |
23 | 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97, 16. |
HAN X J, CHENG C, JI T M, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97, 16. | |
24 | 严干贵, 朱星旭, 李军徽, 等. 内蕴运行寿命测算的混合储能系统控制策略设计[J]. 电力系统自动化, 2013, 37(1): 110-114. |
YAN G G, ZHU X X, LI J H, et al. Control strategy design for hybrid energy storage system with intrinsic operation life measurement and calculation[J]. Automation of Electric Power Systems, 2013, 37(1): 110-114. | |
25 | 赵伟博, 董玉明, 莫娟, 等. 电力与通信共享铁塔的关键技术与商业模式[J]. 中国电力, 2021, 54(11): 171-180. |
ZHAO W B, DONG Y M, MO J, et al. Key technologies and business model of shared towers for power and communication[J]. Electric Power, 2021, 54(11): 171-180. |
[1] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[2] | Guanghua WU, Hongsheng LI, Fei LI, Bo CHEN, Shike ZHANG. Research on the prediction of carbon emissions in the whole life cycle of electric vehicles considering time correlation [J]. Energy Storage Science and Technology, 2022, 11(7): 2206-2212. |
[3] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[4] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[5] | LU Ting, YANG Wenqiang. Review of evaluation parameters and methods of lithium batteries throughout its life cycle [J]. Energy Storage Science and Technology, 2020, 9(3): 657-669. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||