Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (5): 467-475.doi: 10.3969/j.issn.2095-4239.2015.05.003
• Research &development • Previous Articles Next Articles
JIA Chuankun, WANG Qing
Received:
2015-08-13
Online:
2015-10-19
Published:
2015-10-19
CLC Number:
JIA Chuankun, WANG Qing. The development of high energy density redox flow batteries[J]. Energy Storage Science and Technology, 2015, 4(5): 467-475.
[1] Masmoudi Abdelkarim,Abdelkafi Achraf,Krichen Lotfi. Electric power generation based on variable speed wind turbine under load disturbance[J]. Energy ,2011,36(8):5016-5026. [2] Wang Hongyan(王红岩),Li Jingming(李景明),Zhao Qun(赵群),Lin Yingji(林英姬). Resources and development of new energy in China[J]. Acta Petrolei Sinica (石油学报),2009,30(3):469-474. [3] Niknam Taher,Kavousifard Abdollah,Tabatabaei Sajad,Aghaei Jamshid. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks[J]. Journal of Power Sources ,2011,196(20):8881-8896. [4] Xiao Ying(肖英). On the problems and countermeasures of China ’ s new energy technology progress[J]. Science and Technology Progress and Policy (科技进步与对策),2008,25(2):82-85. [5] Johnson David A,Reid Margaret A. Chemical and electrochemical behavior of the Cr (III)/Cr (II) half-cell in the iron-chromium redox energy storage system[J]. Journal of the Electrochemical Society ,1985,132(5):1058-1062. [6] Dong Quanfeng(董全峰),Zhang Huamin(张华民),Jin Minggang(金明钢),Zheng Mingsen(郑明森),Zhan Yading(詹亚丁),Sun Shigang(孙世刚),Lin Zugeng(林祖赓). Research progresses in a flow redox battery[J]. Electrochemistry (电化学),2005,11(3):237-243. [7] Zhang Huamin(张华民). 高效大规模化学储能技术研究开发现状及展望[J]. Chinese Journal of Power Sources (电源技术),2007,31(8):587-591. [8] Thaller Lawrence H. 9th Intersociety Energy Conversion Engineering Conference[M]. New York:American Society of Mechanical Engineers,1974:924-928. [9] Zhao Ping,Zhang Huamin,Zhou Hantao,Chen Jian,Gao Sujun,Yi Baolian. Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack[J]. Journal of Power Sources ,2006,162(2):1416-1420. [10] Nozaki Ken,Kaneko Hiroko,Negishi Akira,Ozawa Takeo. In Proceedings of the Intersociety Energy Conversion Engineering Conference[M]. Las Vegas:Institute of Electrical and Electronics Engineers,1983:1641-1646. [11] Johnson D A. Department of energy conservation and renewable energy:Division of energy storage systems[R]. Washington:National Aeronautics and Space Administration,1982. [12] Hagedorn Norman H,Thaller Lawrence H. Redox storage systems for solar applications[R]. Cleveland:National Aeronautics and Space Administration,Lewis Research Center,1980. [13] Gahn Randall F,Hagedorn Norman H,Johnson Jerome A. Cycling performance of the iron-chromium redox energy storage system[R]. Washington:National Aeronautics and Space Administration,1985. [14] Chen Jinqing(陈金庆),Wang Qian(汪钱),Wang Baoguo(王保国). Research progress in key materials for all vanadium redox flow battery[J]. Modern Chemical Industry (现代化工),2006,26(9):21-24. [15] Yang Zhenguo,Zhang Jianlu,Kintner-Meyer Michael C W,Lu Xiaochuan,Choi Daiwon,Lemmon John P,Liu Jun. Electrochemical energy storage for green grid[J]. Chemical Reviews ,2011,111(5):3577-3613. [16] Skyllas-Kazacos M,Chakrabarti M H,Hajimolana S A,Mjalli F S,Saleem M. Progress in flow battery research and development[J]. Journal of the Electrochemical Society ,2011,158(8):R55-R79. [17] Jia Chuankun,Liu Jianguo,Yan Chuanwei. A significantly improved membrane for vanadium redox flow battery[J]. Journal of Power Sources ,2010,195(13):4380-4383. [18] Remick Robert J,Ang Peter G P. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system:US,4485154A[P]. 1984-11-27. [19] De Leon C P,Frías-Ferrer A,González-García José,Szánto D A,Walsh Frank C. Redox flow cells for energy conversion[J]. Journal of Power Sources ,2006,160(1):716-732. [20] Walsh F C. Electrochemical technology for environmental treatment and clean energy conversion[J]. Pure and Applied Chemistry ,2001,73(12):1819-1837. [21] Leung Puiki,Li Xiaohong,De León Carlos Ponce,Berlouis Leonard,Low C T J,Walsh Frank C. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Advances ,2012,2(27):10125-10156. [22] Huskinson Brian,Marshak Michael P,Suh Changwon,Er Süleyman,Gerhardt Michael R,Galvin Cooper J,Chen Xudong,Aspuru-Guzik Alán,Gordon Roy G,Aziz Michael J. A metal-free organic-inorganic aqueous flow battery[J]. Nature ,2014,505(7482):195-198. [23] Li Bin,Nie Zimin,Vijayakumar M,Li Guosheng,Liu Jun,Sprenkle Vincent,Wang Wei. Ambipolar zinc-polyiodide electrolyte for a high- energy density aqueous redox flow battery[J]. Nature Communications ,2015,6,doi:10.1038/ncomms7303. [24] Matsuda Y,Tanaka K,Okada M,Takasu Y,Morita M, Matsumura-Inoue T. A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte[J]. Journal of Applied Electrochemistry ,1988,18(6):909-914. [25] Chakrabarti M H,Dryfe R A W,Roberts E P L. Evaluation of electrolytes for redox flow battery applications[J]. Electrochimica Acta ,2007,52(5):2189-2195. [26] Liu Qinghua,Shinkle Aaron A,Li Yongdan,Monroe Charles W, Thompson Levi T,Sleightholme Alice E S. Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications ,2010,12(11):1634-1637. [27] Kim Jae Hun,Kim Ki Jae,Park Min Sik,Lee Nam Jin,Hwang Uk,Kim Hansu,Kim Young Jun. Development of metal-based electrodes for non-aqueous redox flow batteries[J]. Electrochemistry Communications ,2011,13(9):997-1000. [28] Sleightholme Alice E S,Shinkle Aaron A,Liu Qinghua,Li Yongdan,Monroe Charles W,Thompson Levi T. Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries[J]. Journal of Power Sources ,2011,196(13):5742-5745. [29] Herr T,Noack J,Fischer P,Tübke J. 1,3-dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries[J]. Electrochimica Acta ,2013,113:127-133. [30] Cappillino Patrick J,Pratt Harry D,Hudak Nicholas S,Tomson Neil C,Anderson Travis M,Anstey Mitchell R. Application of redox non-innocent ligands to non-aqueous flow battery electrolytes[J]. Advanced Energy Materials ,2014,4(1):doi: 10.1002/aenm. 201300566. [31] Xing Xueqi,Zhang Dapeng,Li Yongdan. A non-aqueous all-cobalt redox flow battery using 1, 10-phenanthrolinecobalt (II) hexafluoro- phosphate as active species[J]. Journal of Power Sources ,2015,279:205-209. [32] Lim H S,Lackner A M,Knechtli R C. Zinc-bromine secondary battery[J]. Journal of the Electrochemical Society ,1977,124(8):1154-1157. [33] Tang Chao,Zhou Debi. Methane sulfonic acid solution as supporting electrolyte for zinc-vanadium redox battery[J]. Electrochimica Acta ,2012,65:179-184. [34] Leung P K,De León C Ponce,Walsh F C. An undivided zinc-cerium redox flow battery operating at room temperature (295 K)[J]. Electrochemistry Communications ,2011,13(8):770-773. [35] Pan Junqing,Ji Lizhong,Sun Yanzhi,Wan Pingyu,Cheng Jie,Yang Yusheng,Fan Maohong. Preliminary study of alkaline single flowing ZnO 2 battery[J]. Electrochemistry Communications ,2009,11(11):2191-2194. [36] Zhao Yu,Wang Lina,Byon Hye Ryung. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode[J]. Nature Communications ,2013,4: 1896. [37] Zhao Yu,Byon Hye Ryung. High-performance lithium-iodine flow battery[J]. Advanced Energy Materials ,2013,3(12):1630-1635. [38] Wei Xiaoliang,Xu Wu,Vijayakumar Murugesan,Cosimbescu Lelia,Liu Tianbiao,Sprenkle Vincent,Wang Wei. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries[J]. Advanced Materials ,2014,26(45):7649-7653. [39] Zhao Yu,Ding Yu,Song Jie,Li Gang,Dong Guangbin,Goodenough John B,Yu Guihua. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte[J]. Angewandte Chemie International Edition ,2014,53(41):11036-11040. [40] Wei Xiaoliang,Cosimbescu Lelia,Xu Wu,Hu Jianzhi,Vijayakumar M,Feng Ju,Hu Mary Y,Deng Xuchu,Xiao Jie,Liu Jun,Sprenkle Vincent,Wang Wei. Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species[J]. Advanced Energy Materials ,2015,5(1):doi: 10.1002/aenm.201400678. [41] Takechi Kensuke,Kato Yuichi,Hase Yoko. A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries[J]. Advanced Materials ,2015,27(15):2501-2506. [42] Wang Yarong,Wang Yonggang,Zhou Haoshen. A Li-liquid cathode battery based on a hybrid electrolyte[J]. Chem. Sus. Chem .,2011,4(8):1087-1090. [43] Lu Yuhao,Goodenough John B. Rechargeable alkali-ion cathode-flow battery[J]. Journal of Materials Chemistry ,2011,21(27):10113-10117. [44] Zhao Yu,Ding Yu,Song Jie,Peng Lele,Goodenough John B,Yu Guihua. A reversible Br 2 /Br - redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries[J]. Energy & Environmental Science ,2014,7(6):1990-1995. [45] Manthiram Arumugam,Fu Yongzhu,Su Yusheng. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research ,2012,46(5):1125-1134. [46] Chiang Yet Ming,Carter William Craig,Duduta Mihai,Limthongkul Pimpa. High energy density redox flow device:US,12/970 773[P]. 2014-05-13. [47] Chen Hongning,Zou Qingli,Liang Zhuojian,Liu Hao,Li Quan,Lu Yichun. Sulphur-impregnated flow cathode to enable high-energy- density lithium flow batteries[J]. Nature Communications ,2015,6:doi:10.1038/ncomms6877. [48] Wang Qing,Zakeeruddin Shaik M,Wang Deyu,Exnar Ivan,Grätzel Michael. Redox targeting of insulating electrode materials:A new approach to high-energy-density batteries[J]. Angewandte Chemie International Edition ,2006,45(48):8197-8200. [49] Huang Qizhao,Li Hong,Grätzel Michael,Wang Qing. Reversible chemical delithiation/lithiation of LiFePO 4 :Towards a redox flow lithium-ion battery[J]. Physical Chemistry Chemical Physics ,2013,15(6):1793-1797. [50] Pan Feng,Yang Jing,Huang Qizhao,Wang Xingzhu,Huang Hui,Wang Qing. Redox targeting of anatase TiO 2 for redox flow lithium-ion batteries[J]. Advanced Energy Materials ,2014,4(15):doi: 10.1002/aenm.201400567. [51] Huang Qizhao,Wang Qing. Next-generation, high-energy-density redox flow batteries[J]. Chem. Plus. Chem. ,2015,80(2):312-322. [52] Zhu Yunguang,Jia Chuankun,Yang Jing,Pan Feng,Huang Qizhao,Wang Qing. Dual redox catalysts for oxygen reduction and evolution reactions:Towards a redox flow LiO 2 battery[J]. Chemical Communications ,2015,51(46):9451-9454. |
[1] | Fengrong HE, Qiwen ZHANG, Dechao GUO, Yimin GUO, Xiaodong GUO. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor [J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. |
[2] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[3] | Hengfei LU, Xingwu XU, Shengbin LING, Yongkuan SHEN. Development and application of a LFP pouch cell module [J]. Energy Storage Science and Technology, 2022, 11(5): 1468-1474. |
[4] | Xuan WANG, Qiang YE. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack [J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. |
[5] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[6] | Kang PENG, Junmin LIU, Gonggen TANG, Zhengjin YANG, Tongwen XU. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. |
[7] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[8] | Kehuan XIE, Chuanchang LI, Jian CHEN, Longhai YU, zhun TAN, Weihai QIN. Simulation model advances in vanadium redox flow battery energy storage and monitoring method for state of charge [J]. Energy Storage Science and Technology, 2021, 10(6): 2363-2372. |
[9] | Rong ZHANG, Shuguang WANG, Xuan SUN, Xiaosong JIANG, Lei HU, Xiaoming YAN, Gaohong HE. Preparation of sulfonated poly(ether ether ketone) amphoteric ion exchange membrane and its application in iron-chromium redox flow battery [J]. Energy Storage Science and Technology, 2021, 10(4): 1305-1310. |
[10] | Mengdie YAN, Hui LI, Min LING, Huilin PAN, Qiang ZHANG. Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions [J]. Energy Storage Science and Technology, 2020, 9(6): 1606-1613. |
[11] | Dingyu GUO, Fengjing JIANG, Zhuhan ZHANG. Research progresses in iron-based redox flow batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677. |
[12] | YANG Xulai, ZHANG Zheng, CAO Yong, LIU Chengshi, AI Xinping. The structural engineering for achieving high energy density Li-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1127-1136. |
[13] | LIU Tengyu, ZHANG Xiong, AN Yabin, LI Chen, MA Yanwei. Research progress on the application of graphene for lithium-ion capacitors [J]. Energy Storage Science and Technology, 2020, 9(4): 1030-1043. |
[14] | WANG Qiushi, SUN Miaomiao, LIU Qinghua, YANG Hong CHEN Jingyun, LIU Junqing, LIANG Wenbin. Surface modification of carbon fiber paper for vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(3): 714-719. |
[15] | YANG Hong, LEMMON John, MIAO Ping, LIU Qinghua. The effect of carbon cloth electrode material on the performance of vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(3): 707-713. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||