Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2391-2404.doi: 10.19799/j.cnki.2095-4239.2024.1198
• Energy Storage System and Engineering • Previous Articles Next Articles
Bin WANG1(), Jun TAN2,4, Fenghe LI3, Xinxing LIN1, Sumin GUAN2,4, Ruochen DING1, Wen SU3(
)
Received:
2024-12-17
Revised:
2025-02-07
Online:
2025-06-28
Published:
2025-06-27
Contact:
Wen SU
E-mail:wang_bin14@ctg.com.cn;suwenzn@csu.edu.cn
CLC Number:
Bin WANG, Jun TAN, Fenghe LI, Xinxing LIN, Sumin GUAN, Ruochen DING, Wen SU. Performance research of compression energy storage system with CO2-based mixture[J]. Energy Storage Science and Technology, 2025, 14(6): 2391-2404.
Table 5
Operating condition parameters"
参数 | 设计值 |
---|---|
额定功率Ped/MW | 15 |
储能时间tchar/h | 8 (0:00—8:00) |
释能时间tdis/h | 5 (18:00—23:00) |
低压储罐温度Tlow/℃ | -40 |
高压储罐温度Thigh/℃ | 35 |
压缩机出口温度/℃ | 130 |
压缩机等熵效率ηcs/% | 85 |
汽轮机等熵效率ηes/% | 85 |
发电机额定效率γ/% | 98 |
储水罐压力Pwater/kPa | 300 |
换热器的窄点温差 | 10 |
环境温度T0/℃ | 25 |
峰值电价Ppeak/(元/kWh) | 1.25 (8:00—13:00; 18:00—23:00) |
谷电价格Pvalley/(元/kWh) | 0.3 (23:00—8:00) |
平价电力价格Pparity/(元/kWh) | 0.74 (13:00—18:00) |
运行年限n/a | 20 |
Table 8
Economic parameters of compression CO2/R41 energy storage system (0.65/0.35)"
名称 | 数值 |
---|---|
透平成本/元 | 12.32×106 |
压缩机成本/元 | 4.63×106 |
换热器成本/元 | 12.39×106 |
高压储罐成本/元 | 36.52×106 |
低压储罐成本/元 | 19.51×106 |
储水罐成本/元 | 0.06×106 |
土地开发成本/元 | 8.97×106 |
设备安装成本/元 | 17.93×106 |
工程、管理和规划成本/元 | 5.83×106 |
应急成本/元 | 11.66×106 |
PEC/元 | 85.43×106 |
TCC/元 | 129.82×106 |
年现金流出值/元 | 13.89×106 |
年现金流入值/元 | 34.22×106 |
投资回收期/a | 6.38 |
1 | 李子钰, 吕宏, 李祖辉, 等. 空气压缩储能的发展现状及其应用前景[J]. 资源节约与环保, 2023(8): 5-8. DOI: 10.16317/j.cnki.12-1377/x.2023.08.032. |
LI Z Y, LU H, LI Z H, et al. The development status and application prospects of air Compressed energy storage [J].Resources Economization & Environmental Protection, 2023(8): 5-8. DOI: 10.16317/j.cnki.12-1377/x.2023.08.032. | |
2 | 翟璇, 王松, 范小平, 等. 基于压缩CO2 的新型储能技术研究进展[J]. 电力科技与环保, 2024, 40(2): 178-190. |
ZHAI X, WANG S, FAN X P, et al. Research progress of new energy storage technology based on compressed CO2[J]. Electric Power Technology and Environmental Protection, 2024, 40 (2): 178-190 | |
3 | PENG Y R, ZHU J, WANG J, et al. Design and development of an advanced gas storage device and control method for a novel compressed CO2 energy storage system[J]. Renewable Energy, 2024, 237: 121535. DOI: 10.1016/j.renene.2024.121535. |
4 | XU W P, ZHAO P, GOU F F, et al. A combined heating and power system based on compressed carbon dioxide energy storage with carbon capture: Exploring the technical potential[J]. Energy Conversion and Management, 2022, 260: 115610. DOI: 10.1016/j.enconman.2022.115610. |
5 | LI H C, DING R C, SU W, et al. A comprehensive performance comparison between compressed air energy storage and compressed carbon dioxide energy storage[J]. Energy Conversion and Management, 2024, 319: 118972. DOI: 10.1016/j.enconman. 2024.118972. |
6 | 关苏敏, 钟声远, 李翰宸, 等. 压缩CO2储能技术研究现状及发展趋势[J]. 储能科学与技术, 2025, 14(1): 240-254. DOI: 10.19799/j.cnki.2095-4239.2024.0710. |
GUAN S M, ZHONG S Y, LI H C, et al. Research status and development trend of compressed CO2 energy storage technology[J]. Energy Storage Science and Technology, 2025, 14(1): 240-254. DOI: 10.19799/j.cnki.2095-4239.2024.0710. | |
7 | LIANG Y R, LI P, XING L L, et al. Current status of thermodynamic electricity storage: Principle, structure, storage device and demonstration[J]. Journal of Energy Storage, 2024, 80: 110347. DOI: 10.1016/j.est.2023.110347. |
8 | LI F H, XING L L, SU W, et al. An idea to construct integrated energy systems of data center by combining CO2 heat pump and compressed CO2 energy storage[J]. Journal of Energy Storage, 2024, 75: 109581. DOI: 10.1016/j.est.2023.109581. |
9 | LI F H, LI P, DING R C, et al. Thermo-economic analysis on trans-critical compressed CO2 energy storage system integrated with the waste heat of liquid-cooled data center[J]. Journal of Energy Storage, 2024, 103: 114292. DOI: 10.1016/j.est.2024.114292. |
10 | YAN X W, DING J L, ZHANG Y L, et al. Thermodynamic evaluation on a new CO2 energy storage system assisted by adsorption bed[J]. Journal of Energy Storage, 2023, 61: 106775. DOI: 10.1016/j.est.2023.106775. |
11 | 万玉珂, 吴闯, 刘朝, 等. 液态存储跨临界压缩CO2储能系统性能分析[J]. 西安交通大学学报, 2023, 57(1): 25-33. |
WAN Y K, WU C, LIU C, et al. Performance analysis of a transcritical compressed CO2 energy storage system based on liquid storage[J]. Journal of Xi'an Jiaotong University, 2023, 57(1): 25-33. | |
12 | 梁娅冉, 蔺新星, 苏文, 等. 基于CO2混合工质动力循环的塔式太阳能热发电系统四季性能分析[J]. 太阳能学报, 2023, 44(9): 257-263. DOI: 10.19912/j.0254-0096.tynxb.2022-0688. |
LIANG Y R, LIN X X, SU W, et al. Performance analysis of solar power tower system with CO2-basaed mixtures at typical days of four seasons[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 257-263. DOI: 10.19912/j.0254-0096.tynxb.2022-0688. | |
13 | ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503. DOI: 10.1002/er.3732. |
14 | YAN X W, ZHAO R J, LIU Z. Performance of a CO2-mixture cycled energy storage system: Thermodynamic and economic analysis[J]. Applied Thermal Engineering, 2023, 226: 120280. DOI: 10.1016/j.applthermaleng.2023.120280. |
15 | TANG B, SUN L, XIE Y H. Design and performance evaluation of an energy storage system using CO2-based binary mixtures for thermal power plant under dry conditions[J]. Energy Conversion and Management, 2022, 268: 116043. DOI: 10.1016/j.enconman. 2022.116043. |
16 | 赵攀, 吴汶泽, 许文盼, 等. 两级蓄冷跨临界压缩CO2混合工质储能系统特性分析[J]. 中南大学学报(自然科学版), 2023, 54(10): 4150-4162. DOI: 10.11817/j.issn.1672-7207.2023.10.032. |
ZHAO P, WU W Z, XU W P, et al. Performance analysis of a transcritical compressed CO2-based mixture energy storage system with two-stage cold energy storage[J]. Journal of Central South University (Science and Technology), 2023, 54(10): 4150-4162. DOI: 10.11817/j.issn.1672-7207.2023.10.032. | |
17 | LIANG Y R, LIN X X, SU W, et al. Preliminary design and optimization of a solar-driven combined cooling and power system for a data center[J]. Energy Conversion and Management: X, 2023, 20: 100409. DOI: 10.1016/j.ecmx.2023.100409. |
18 | LIANG Y R, LI P, SU W, et al. Development of green data center by configuring photovoltaic power generation and compressed air energy storage systems[J]. Energy, 2024, 292: 130516. DOI: 10.1016/j.energy.2024.130516. |
19 | TIAN H, SHU G Q, WEI H Q, et al. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE)[J]. Energy, 2012, 47(1): 125-136. DOI: 10.1016/j.energy.2012. 09.021. |
[1] | Jiabao TAN, Yufei WANG, Hua XUE. Modeling and performance analysis of piston gravity energy storage system [J]. Energy Storage Science and Technology, 2025, 14(6): 2383-2390. |
[2] | Wenjun SONG, Zhonglu HE, Bin CAO, Ziwei LIANG, Chunmei GUO. Experimental study on the performance of a pumped thermal electricity storage system based on the subcritical organic rankine cycle [J]. Energy Storage Science and Technology, 2024, 13(12): 4339-4348. |
[3] | Yang CAI, Zeyu ZHOU, Xiaoyan HUANG, Jiehong DENG, Fuyun ZHAO. Performance analysis of an environmental temperature-difference energy harvest device based on fin structure optimization [J]. Energy Storage Science and Technology, 2023, 12(12): 3780-3788. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||