Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 3065-3077.doi: 10.19799/j.cnki.2095-4239.2025.0502
• Special Issue on Short Term High-Frequency High-Power Energy Storage • Previous Articles
Tanying LIU1,2(), Zhenxin SUN1(
), Liangjie WEI1,2, Hui LIU1, Liping ZHANG1, Chu WANG1
Received:
2025-05-28
Revised:
2025-06-12
Online:
2025-08-28
Published:
2025-08-18
Contact:
Zhenxin SUN
E-mail:18910250219@163.com;12024114@chnenergy.com.cn
CLC Number:
Tanying LIU, Zhenxin SUN, Liangjie WEI, Hui LIU, Liping ZHANG, Chu WANG. A review of power curve decomposition techniques for energy storage systems[J]. Energy Storage Science and Technology, 2025, 14(8): 3065-3077.
[1] | 肖先勇, 郑子萱. "双碳" 目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59. DOI: 10.15961/j.jsuese.202100656. |
XIAO X Y, ZHENG Z X. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1): 47-59. DOI: 10. 15961/j.jsuese.202100656. | |
[2] | 陈云瑶, 陈玉州, 加央拉姆, 等. 兼顾保供与消纳的高比例清洁能源系统储能优化配置运行策略[J]. 储能科学与技术, 2025, 14(5): 2043-2056. DOI: 10.19799/j.cnki.2095-4239.2024.1089. |
CHEN Y Y, CHEN Y Z, JIA Y, et al. Optimization and operation strategy for energy storage configurations in high-proportion clean energy systems considering both supply reliability and energy utilization[J]. Energy Storage Science and Technology, 2025, 14(5): 2043-2056. DOI: 10.19799/j.cnki.2095-4239. 2024. 1089. | |
[3] | 周涛, 贺伟, 李会芳, 等. 新型电力系统下储能辅助运行与优化配置研究综述[J/OL]. 南京信息工程大学学报, 2024: 1-25. (2024-12-05). https://link.cnki.net/doi/10.13878/j.cnki.jnuist.20241019001. |
ZHOU T, HE W, LI H F, et al. Overview of energy storage system assistant operation and optimization configuration research in new power systems[J/OL]. Journal of Nanjing University of Information Science & Technology, 2024: 1-25. (2024-12-05). https://link.cnki.net/doi/10.13878/j.cnki.jnuist.20241019001. | |
[4] | 冯梦圆, 文书礼, 时珊珊, 等. 满足新型电力系统调峰调频需求的储能优化配置及运行研究综述[J/OL]. 上海交通大学学报, 2024: 1-32. (2024-07-25). https://link.cnki.net/doi/10.16183/j.cnki.jsjtu. 2024.128. |
FENG M Y, WEN S L, SHI S S, et al. A review of optimal allocation and operation of energy storage system for peak shaving and frequency regulation in new type power systems[J/OL]. Journal of Shanghai Jiao Tong University, 2024: 1-32. (2024-07-25). https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2024.128. | |
[5] | 余文宾. 基于混合储能的新能源汽车能量管理策略研究[D]. 长春: 吉林大学, 2024. DOI: 10.27162/d.cnki.gjlin.2024.003146. |
YU W B. Study on energy management strategy for new energy vehicles based on hybrid energy storage[D]. Changchun: Jilin University, 2024. DOI: 10.27162/d.cnki.gjlin.2024.003146. | |
[6] | 程龙, 张方华. 用于混合储能系统平抑功率波动的小波变换方法[J]. 电力自动化设备, 2021, 41(3): 100-104, 128. DOI: 10.16081/j.epae. 202102005. |
CHENG L, ZHANG F H. Wavelet transform method for hybrid energy storage system smoothing power fluctuation[J]. Electric Power Automation Equipment, 2021, 41(3): 100-104, 128. DOI: 10.16081/j.epae.202102005. | |
[7] | 苏浩, 张建成, 冯冬涵, 等. 模块化混合储能系统及其能量管理策略[J]. 电力自动化设备, 2019, 39(1): 127-133, 140. DOI: 10.16081/j.issn.1006-6047.2019.01.019. |
SU H, ZHANG J C, FENG D H, et al. Modular hybrid energy storage system and its energy management strategy[J]. Electric Power Automation Equipment, 2019, 39(1): 127-133, 140. DOI: 10.16081/j.issn.1006-6047.2019.01.019. | |
[8] | 赵靖英, 乔珩埔, 姚帅亮, 等. 考虑储能SOC自恢复的风电波动平抑混合储能容量配置策略[J]. 电工技术学报, 2024, 39(16): 5206-5219. DOI: 10.19595/j.cnki.1000-6753.tces.230915. |
ZHAO J Y, QIAO H P, YAO S L, et al. Hybrid energy storage system capacity configuration strategy for stabilizing wind power fluctuation considering SOC self-recovery[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5206-5219. DOI: 10.19595/j.cnki.1000-6753.tces.230915. | |
[9] | 桑丙玉, 王德顺, 杨波, 等. 平滑新能源输出波动的储能优化配置方法[J]. 中国电机工程学报, 2014, 34(22): 3700-3706. DOI: 10. 13334/j.0258-8013.pcsee.2014.22.015. |
SANG B Y, WANG D S, YANG B, et al. Optimal allocation of energy storage system for smoothing the output fluctuations of new energy[J]. Proceedings of the CSEE, 2014, 34(22): 3700-3706. DOI: 10.13334/j.0258-8013.pcsee.2014.22.015. | |
[10] | 钟国彬, 吴涛, 曾杰, 等. 基于离散傅里叶变换的主动配电网混合储能容量优化配置[J]. 电力建设, 2018, 39(8): 85-93. |
ZHONG G B, WU T, ZENG J, et al. Optimal capacity planning of hybrid energy storage system in active distribution network on the basis of discrete Fourier transform[J]. Electric Power Construction, 2018, 39(8): 85-93. | |
[11] | 卢芸, 徐骏. 基于小波包分解的风电混合储能容量配置方法[J]. 电力系统保护与控制, 2016, 44(11): 149-154. |
LU Y, XU J. Wind power hybrid energy storage capacity configuration based on wavelet packet decomposition[J]. Power System Protection and Control, 2016, 44(11): 149-154. | |
[12] | 张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14): 40-48. DOI: 10. 19595/j.cnki.1000-6753.tces.2016.14.005. |
ZHANG Q, LI X R, YANG M, et al. Capacity determination of hybrid energy storage system for smoothing wind power fluctuations with maximum net benefit[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 40-48. DOI: 10.19595/j.cnki.1000-6753.tces.2016.14.005. | |
[13] | 刘抒睿, 李培强, 陈家煜, 等. 基于VMD分解下的皮尔逊相关性分析及T-tFD的混合储能容量配置[J]. 中国电力, 2024, 57(7): 82-97. |
LIU S R, LI P Q, CHEN J Y, et al. Allocation of hybrid energy storage capacity based on Pearson correlation analysis and T-tFD algorithm under VMD decomposition[J]. Electric Power, 2024, 57(7): 82-97. | |
[14] | 李明, 刘国营, 张国锋, 等. 基于离散傅里叶变换的直流微电网储能调控方法研究[J]. 电子设计工程, 2021, 29(11): 70-73, 79. DOI: 10. 14022/j.issn1674-6236.2021.11.015. |
LI M, LIU G Y, ZHANG G F, et al. Research on DC microgrid energy storage control method based on discrete Fourier transform[J]. Electronic Design Engineering, 2021, 29(11): 70-73, 79. DOI: 10.14022/j.issn1674-6236.2021.11.015. | |
[15] | 孙振新, 李海昭, 张秩鸣, 等. 克劳修斯熵在多时间尺度储能配置问题上的应用[J]. 热力发电, 2024, 53(9): 92-99. DOI: 10.19666/j.rlfd. 202404081. |
SUN Z X, LI H Z, ZHANG Z M, et al. Application of Clausius entropy to energy storage configuration problems at multi-time scale[J]. Thermal Power Generation, 2024, 53(9): 92-99. DOI: 10.19666/j.rlfd.202404081. | |
Thermal Power Generation, 2024, 53(09): 92-99. | |
[16] | 肖峻, 白临泉, 王成山, 等. 基于频谱分析的孤立微网中储能和柴油发电机容量的优化方法[J]. 电网技术, 2014, 38(9): 2342-2348. DOI: 10.13335/j.1000-3673.pst.2014.09.005. |
XIAO J, BAI L Q, WANG C S, et al. Spectrum analysis based capacity optimization method of energy storage and diesel engines in island microgrids[J]. Power System Technology, 2014, 38(9): 2342-2348. DOI: 10.13335/j.1000-3673.pst.2014.09.005. | |
[17] | 陈厚合, 杜欢欢, 张儒峰, 等. 考虑风电不确定性的混合储能容量优化配置及运行策略研究[J]. 电力自动化设备, 2018, 38(8): 174-182, 188. DOI: 10.16081/j.issn.1006-6047.2018.08.025. |
CHEN H H, DU H H, ZHANG R F, et al. Optimal capacity configuration and operation strategy of hybrid energy storage considering uncertainty of wind power[J]. Electric Power Automation Equipment, 2018, 38(8): 174-182, 188. DOI: 10. 16081/j.issn.1006-6047.2018.08.025. | |
[18] | 王利猛, 刘久成, 田春光, 等. 基于统计学方法的微网混合储能容量优化配置[J]. 电网技术, 2018, 42(1): 187-194. DOI: 10.13335/j. 1000-3673.pst.2017.0852. |
WANG L M, LIU J C, TIAN C G, et al. Capacity optimization of hybrid energy storage in microgrid based on statistic method[J]. Power System Technology, 2018, 42(1): 187-194. DOI: 10.13335/j.1000-3673.pst.2017.0852. | |
[19] | MAO M Q, LIU Y F, JIN P, et al. Energy coordinated control of hybrid battery-supercapacitor storage system in a microgrid[C]//2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). July 8-11, 2013, Rogers, AR, USA. IEEE, 2013: 1-6. DOI: 10.1109/PEDG. 2013. 6785596. |
[20] | MOON S P, LABIOS R, CHANG B H, et al. Allocation of energy storage capacity for large wind farms in Korea using discrete Fourier transform[J]. KEPCO Journal on Electric Power and Energy, 2016, 2(3): 377-382. DOI: 10.18770/kepco. 2016. 02. 03.377. |
[21] | KUPERMAN A, AHARON I, KARA A, et al. A frequency domain approach to analyzing passive battery-ultracapacitor hybrids supplying periodic pulsed current loads[J]. Energy Conversion and Management, 2011, 52(12): 3433-3438. DOI: 10.1016/j.enconman.2011.07.013. |
[22] | YOUSSEF O A S. Online applications of wavelet transforms to power system relaying - part II[C]//2007 IEEE Power Engineering Society General Meeting. June 24-28, 2007, Tampa, FL, USA. IEEE, 2007: 1-7. DOI: 10.1109/PES.2007.385604. |
[23] | 张江林, 张亚超, 洪居华, 等. 基于离散小波变换和模糊K-modes的负荷聚类算法[J]. 电力自动化设备, 2019, 39(2): 100-106, 122. DOI: 10.16081/j.issn.1006-6047.2019.02.015. |
ZHANG J L, ZHANG Y C, HONG J H, et al. A load clustering algorithm based on discrete wavelet transform and fuzzy K-modes[J]. Electric Power Automation Equipment, 2019, 39(2): 100-106, 122. DOI: 10.16081/j.issn.1006-6047.2019.02.015. | |
[24] | YUN P P, CHEN Q T, MI Y, et al. Improved wavelet packet of hybrid energy storage to smooth wind power fluctuation[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). December 23-25, 2021. Nanjing, China. IEEE, 2021: 1160-1165.. DOI: 10.1109/ispec53008.2021.9735582. |
[25] | JIANG Q Y, HONG H S. Wavelet-based capacity configuration and coordinated control of hybrid energy storage system for smoothing out wind power fluctuations[J]. IEEE Transactions on Power Systems, 2012, 28(2): 1363-1372. DOI: 10.1109/TPWRS. 2012.2212252. |
[26] | TRUNG T T, AHN S J, CHOI J H, et al. Real-time wavelet-based coordinated control of hybrid energy storage systems for denoising and flattening wind power output[J]. Energies, 2014, 7(10): 6620-6644. DOI: 10.3390/en7106620. |
[27] | 张鹏, 张峰, 梁军, 等. 采用小波包分解和模糊控制的风电机组储能优化配置[J]. 高电压技术, 2019, 45(2): 609-617. DOI: 10.13336/j. 1003-6520.hve.20190130035. |
ZHANG P, ZHANG F, LIANG J, et al. Capacity optimization of hybrid energy storage system for wind farm using wavelet packet decomposition and fuzzy control[J]. High Voltage Engineering, 2019, 45(2): 609-617. DOI: 10.13336/j.1003-6520.hve. 20190130035. | |
[28] | GUO T T, LIU Y B, ZHAO J B, et al. A dynamic wavelet-based robust wind power smoothing approach using hybrid energy storage system[J]. International Journal of Electrical Power & Energy Systems, 2020, 116: 105579. DOI: 10.1016/j.ijepes. 2019.105579. |
[29] | 吴清华. 二次调频用混合储能系统容量优化配置与实时功率分配研究[D]. 杭州: 浙江大学, 2024. DOI: 10.27461/d.cnki.gzjdx. 2024. 000611. |
WU Q H. Research on capacity optimization configuration and real-time power allocation of a hybrid energy storage system for secondary frequency regulation[D]. Hangzhou: Zhejiang University, 2024. DOI: 10.27461/d.cnki.gzjdx.2024.000611. | |
[30] | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. DOI: 10.1098/rspa.1998.0193. |
[31] | WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. DOI: 10.1142/s1793536909000047. |
[32] | TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 22-27, 2011, Prague, Czech Republic. IEEE, 2011: 4144-4147. DOI: 10.1109/ICASSP.2011.5947265. |
[33] | 张宁. 基于CEEMD阈值和相关系数原理的MEMS陀螺信号去噪方法[J]. 传感技术学报, 2018, 31(9): 1383-1388, 1392. |
ZHANG N. Signal de-noising method for MEMS gyroscope based on CEEMD threshold and correlation coefficient principle[J]. Chinese Journal of Sensors and Actuators, 2018, 31(9): 1383-1388, 1392. | |
[34] | DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. DOI: 10.1109/TSP.2013.2288675. |
[35] | ZHOU G P, MIAO F F, TANG X S, et al. Research on wind power fluctuation and its impacts on power system frequency[J]. Applied Mechanics and Materials, 2013, 291/292/293/294: 407-414. DOI: 10.4028/www.scientific.net/amm.291-294.407. |
[36] | 孙承晨, 袁越, San Shing CHOI, 等. 基于经验模态分解和神经网络的微网混合储能容量优化配置[J]. 电力系统自动化, 2015, 39(8): 19-26. |
SUN C C, YUAN Y, CHOI S S, et al. Capacity optimization of hybrid energy storage systems in microgrid using empirical mode decomposition and neural network[J]. Automation of Electric Power Systems, 2015, 39(8): 19-26. | |
[37] | 郭玲娟, 魏斌, 韩肖清, 等. 基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J]. 高电压技术, 2020, 46(2): 527-537. DOI: 10.13336/j.1003-6520.hve.20200131017. |
GUO L J, WEI B, HAN X Q, et al. Capacity optimal configuration of hybrid energy storage in hybrid AC/DC micro-grid based on ensemble empirical mode decomposition[J]. High Voltage Engineering, 2020, 46(2): 527-537. DOI: 10.13336/j.1003-6520.hve.20200131017. | |
[38] | 李艳波, 杨凯, 陈俊硕, 等. 一种适用于风储微电网的混合储能系统的功率分配策略[J]. 电测与仪表, 2025, 62(2): 43-50. DOI: 10. 19753/j.issn1001-1390.2025.02.006. |
LI Y B, YANG K, CHEN J S, et al. Power distribution strategy for a hybrid energy storage system suitable for wind-storage microgrid[J]. Electrical Measurement & Instrumentation, 2025, 62(2): 43-50. DOI: 10.19753/j.issn1001-1390.2025.02.006. | |
[39] | 孟顺, 谢桦. 基于经验模态分解的平滑可再生能源功率波动的储能容量优化[J]. 电源学报, 2014, 12(5): 7-11, 18. DOI: 10.13234/j.issn.2095-2805.2014.5.7. |
MENG S, XIE H. Energy storage capacity optimization in smoothing renewable energy power fluctuations based on empirical mode decomposition[J]. Journal of Power Supply, 2014, 12(5): 7-11, 18. DOI: 10.13234/j.issn.2095-2805.2014.5.7. | |
[40] | 杨锡运, 曹超, 李相俊, 等. 基于模糊经验模态分解的电池储能系统平滑风电出力控制策略[J]. 电力建设, 2016, 37(8): 134-140. |
YANG X Y, CAO C, LI X J, et al. Control strategy of smoothing wind power output using battery energy storage system based on fuzzy empirical mode decomposition[J]. Electric Power Construction, 2016, 37(8): 134-140. | |
[41] | ZHANG L, ZHANG T W, ZHANG K, et al. Research on power fluctuation strategy of hybrid energy storage to suppress wind-photovoltaic hybrid power system[J]. Energy Reports, 2023, 10: 3166-3173. DOI: 10.1016/j.egyr.2023.09.176. |
[42] | 王晋君, 苟凯杰, 陈衡, 等. 平抑风电波动的飞轮-电化学混合储能容量优化配置研究[J]. 动力工程学报, 2024, 44(3): 439-446. DOI: 10.19805/j.cnki.jcspe.2024.230584. |
WANG J J, GOU K J, CHEN H, et al. Allocation optimization of flywheel-electrochemical hybrid energy storage capacity to stabilize wind power fluctuations[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 439-446. DOI: 10.19805/j.cnki.jcspe.2024.230584. | |
[43] | LIU W, ZHAO W H, FENG C W, et al. Power allocation optimization of hybrid energy storage system based on AOA-VMD[M]//The Proceedings of the 11th Frontier Academic Forum of Electrical Engineering (FAFEE2024). Singapore: Springer Nature Singapore, 2024: 707-714. DOI: 10.1007/978-981-97-8780-7_73. |
[44] | YANG X Y, YE X Y, LI Z Z, et al. Hybrid energy storage configuration method for wind power microgrid based on EMD decomposition and two-stage robust approach[J]. Scientific Reports, 2024, 14: 2733. DOI: 10.1038/s41598-024-53101-4. |
[45] | ZHANG Y, ZHANG Y K, WU T Z. Integrated strategy for real-time wind power fluctuation mitigation and energy storage system control[J]. Global Energy Interconnection, 2024, 7(1): 71-81. DOI: 10.1016/j.gloei.2024.01.007. |
[46] | 张国驹, 陈瑶, 唐西胜, 等. 基于波动特征参数的多类型储能协调控制[J]. 电工技术学报, 2013, 28(6): 271-276. DOI: 10.19595/j.cnki.1000-6753.tces.2013.06.039. |
ZHANG G J, CHEN Y, TANG X S, et al. Research on coordinated control strategy of multi-type energy storage based on fluctuation characteristic parameters[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 271-276. DOI: 10.19595/j.cnki.1000-6753.tces.2013.06.039. | |
[47] | PAATERO J V, LUND P D. Effect of energy storage on variations in wind power[J]. Wind Energy, 2005, 8(4): 421-441. DOI: 10. 1002/we.151. |
[48] | 孙玉树, 李星, 唐西胜, 等. 应用于微网的多类型储能多级控制策略[J]. 高电压技术, 2017, 43(1): 181-188. DOI: 10.13336/j.1003-6520.hve.20161227024. |
SUN Y S, LI X, TANG X S, et al. Multi-level control strategy of multi-type energy storages for microgrid[J]. High Voltage Engineering, 2017, 43(1): 181-188. DOI: 10.13336/j.1003-6520.hve.20161227024. | |
[49] | 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97, 16. DOI: 10. 13334/j.0258-8013.pcsee.2013.34.015. |
HAN X J, CHENG C, JI T M, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97, 16. DOI: 10. 13334/j.0258-8013.pcsee.2013.34.015. | |
[50] | CAO J, DU W J, WANG H F, et al. Optimal sizing and control strategies for hybrid storage system as limited by grid frequency deviations[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5486-5495. DOI: 10.1109/TPWRS.2018.2805380. |
[51] | 宇航. 利用储能系统平抑风电功率波动的仿真研究[D]. 吉林: 东北电力大学, 2010.YU H. Simulation research on smoothing the wind power fluctuation by using energy storage system[D]. Jilin: Northeast Dianli University, 2010. |
[52] | 王苏蓬, 张新慧, 张军, 等. 基于WPD-LPF和灰色关联度的混合储能平抑风电波动控制策略[J]. 可再生能源, 2022, 40(9): 1241-1248. DOI: 10.13941/j.cnki.21-1469/tk.2022.09.013. |
WANG S P, ZHANG X H, ZHANG J, et al. Wind power fluctuation control strategy based on WPD-LPF and gray correlation[J]. Renewable Energy Resources, 2022, 40(9): 1241-1248. DOI: 10. 13941/j.cnki.21-1469/tk.2022.09.013. | |
[53] | 吕超贤, 李欣然, 户龙辉, 等. 基于小波分频与双层模糊控制的多类型储能系统平滑策略[J]. 电力系统自动化, 2015, 39(2): 21-29. |
LYU C X, LI X R, HU L H, et al. A smoothing strategy for hybrid energy storage system based on wavelet frequency allocation and two-level fuzzy control[J]. Automation of Electric Power Systems, 2015, 39(2): 21-29. | |
[54] | WALSH J L. A closed set of normal orthogonal functions[J]. American Journal of Mathematics, 1923, 45(1): 5. DOI: 10.2307/2387224. |
[55] | 鲁建华. 类Walsh序的Walsh函数及其应用[D]. 武汉: 华中科技大学, 2004.LU J H. Walsh functions of Quasi-Walsh order and its applications[D]. Wuhan: Huazhong University of Science and Technology, 2004. |
[56] | 李宝安, 李行善, 刘星. Walsh变换对冲击信号序列特征提取的研究[J]. 北京航空航天大学学报, 2003, 29(9): 802-806. DOI: 10.13700/j.bh.1001-5965.2003.09.012. |
LI B A, LI X S, LIU X. Research on feature extraction of impulse signal using Walsh transform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(9): 802-806. DOI: 10. 13700/j.bh.1001-5965.2003.09.012. | |
[57] | 李明飞, 莫小范, 赵连洁, 等. 基于Walsh-Hadamard变换的单像素遥感成像[J]. 物理学报, 2016, 65(6): 114-120. |
LI M F, MO X F, ZHAO L J, et al. Single-pixel remote imaging based on Walsh-Hadamard transform[J]. Acta Physica Sinica, 2016, 65(6): 114-120. | |
[58] | KARP R M. The fast Walsh-Hadamard transform[J]. IEEE Transactions on Computers, 1968, 18(10): 902-908. |
[59] | HADAMARD J S. Résolution d'une question relative aux déterminants[J]. Bulletin des Sciences Mathématiques, 1893, 17: 240-246. |
[60] | 姜文博, 陈念, 郭东杰, 等. 基于自适应沃尔什-哈达玛变换的焊缝图像压缩方法[J]. 无损检测, 2023, 45(11): 67-71. |
JIANG W B, CHEN N, GUO D J, et al. Weld image compression method based on adaptive Walsh-Hadamard transform[J]. Nondestructive Testing Technologying, 2023, 45(11): 67-71. | |
[61] | 经哲, 郭利. Walsh变换与数学形态学的特征提取对比研究[J]. 自动化仪表, 2015, 36(12): 19-22. DOI: 10.16086/j.cnki.issn1000-0380. 201512006. |
JING Z, GUO L. Walsh transform compared with mathematics morphology in feature extraction[J]. Process Automation Instrumentation, 2015, 36(12): 19-22. DOI: 10.16086/j.cnki.issn1000-0380.201512006. | |
[62] | MARAŞ M, AYVAZ E N, GÖMEÇ M, et al. A novel GFDM waveform design based on cascaded WHT-LWT transform for the beyond 5G wireless communications[J]. Sensors, 2021, 21(5): 1831. DOI: 10.3390/s21051831. |
[63] | TIAN J, PEI H Z, REN S G, et al. High-speed memristive Walsh-hadamard transform for image compression[C]//2024 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). October 25-27, 2024, Hangzhou, China. IEEE, 2024: 58-59. DOI: 10.1109/ICTA64028.2024.10860475. |
[64] | 刘江涛, 廖东良, 葛新民, 等. Walsh反演法在提高滩坝砂薄层测井曲线分辨率中的应用——以沾化凹陷为例[J]. 石油天然气学报, 2013, 35(12): 93-97, 7. |
LIU J T, LIAO D L, GE X M, et al. Application of Walsh inversion in improving resolution of logging curve of beach-sand thin layers—By taking Zhanhua Sag for example[J]. Journal of Oil and Gas Technology, 2013, 35(12): 93-97, 7. | |
[65] | 李庆谋, 成秋明, 刘少华. Walsh列率域中多维分形模型与GIS环境下地球物理信号处理[J]. 地球物理学报, 2007, 50(6): 1884-1893. |
LI Q M, CHENG Q M, LIU S H. Scale invariant property in Walsh frequency domain and a multifractal model for geophysical data processing in GIS environment[J]. Chinese Journal of Geophysics, 2007, 50(6): 1884-1893. | |
[66] | LI Z H, ZHANG Q S. Introduction to bridge functions[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, EMC-25(4): 459-464. DOI: 10.1109/TEMC.1983.304137. |
[67] | 张其善. 桥函数理论及其应用[M]. 北京: 国防工业出版社, 1992.ZHANG Q S. Bridge function theory and its application[M]. Beijing: National Defense Industry Press, 1992. |
[68] | 张凤元, 徐亚飞. 桥函数智能码在认知超宽带无线电中的应用[J]. 遥测遥控, 2012, 33(5): 11-15. DOI: 10.13435/j.cnki.ttc.002496. |
ZHANG F Y, XU Y F. Application of bridge function smart codes in UWB cognitive radio systems[J]. Journal of Telemetry, Tracking and Command, 2012, 33(5): 11-15. DOI: 10.13435/j.cnki.ttc. 002496. | |
[69] | 竺南直, 张其善. 广义沃尔什函数复制理论及其应用[J]. 电子学报, 1994, 22(1): 32-37. |
ZHU N Z, ZHANG Q S. Copy theory of generalized Walsh function and its application[J]. Acta Electronica Sinica, 1994, 22(1): 32-37. | |
[70] | 王钢, 张其善. 一种新型非正弦函数——混合进制广义桥函数的复制生成算法及其主要性质[J]. 中国科学E辑: 信息科学, 2005, 35(10): 1064-1071. |
WANG G, ZHANG Q S. A new type of non-sinusoidal function—Hybrid generalized bridge function's copy generation algorithm and its main properties[J]. Science in China, Ser E, 2005, 35(10): 1064-1071. | |
[71] | 徐亚飞. 桥函数在超宽带认知无线电中的应用[D]. 北京: 北京化工大学, 2012.XU Y F. The application of bridge function smart codes in UWB cognitive radio systems[D]. Beijing: Beijing University of Chemical Technology, 2012. |
[72] | 张其善, 常青. 桥函数理论综述[J]. 航空学报, 2002, 23(5): 436-440. |
ZHANG Q S, CHANG Q. Summary of bridge function theory[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 436-440. | |
[73] | HAAR A. Zur theorie der orthogonalen funktionensysteme[J]. Mathematische Annalen, 1910, 69(3): 331-371. DOI: 10.1007/BF01456326. |
[74] | 赵志栋. 基于小波变换的指纹图像压缩算法研究[D]. 杭州: 浙江大学, 2013.ZHAO Z D. Research on fingerprint image compressing based on wavelet transform[D]. Hangzhou: Zhejiang University, 2013. |
[75] | STANKOVIĆ R S, FALKOWSKI B J. The Haar wavelet transform: Its status and achievements[J]. Computers & Electrical Engineering, 2003, 29(1): 25-44. DOI: 10.1016/S0045-7906(01)00011-8. |
[76] | 李琳, 靳志鑫, 俞晓磊, 等. Haar小波下采样优化YOLOv9的道路车辆和行人检测[J]. 计算机工程与应用, 2024, 60(20): 207-214. |
LI L, JIN Z X, YU X L, et al. Road vehicle and pedestrian detection based on YOLOv9 for haar wavelet downsampling[J]. Computer Engineering and Applications, 2024, 60(20): 207-214. | |
[77] | 申永鹏, 孙嵩楠, 王延峰, 等. 混合储能系统闭环Haar小波变换能量管理方法[J]. 太阳能学报, 2023, 44(10): 523-530. DOI: 10.19912/j.0254-0096.tynxb.2022-0976. |
SHEN Y P, SUN S N, WANG Y F, et al. Closed-loop haar wavelet transform energy management method of hybrid energy storage system[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 523-530. DOI: 10.19912/j.0254-0096.tynxb.2022-0976. | |
[78] | 张利. 基于Haar小波与经验小波变换的短时人体行为识别[D]. 安庆: 安庆师范大学, 2023. DOI: 10.27761/d.cnki.gaqsf. 2023. 000195. |
ZHANG L. Short-term human behavior recognition based on Haar wavelet and empirical wavelet transform[D]. Anqing: Anqing Normal University, 2023. DOI: 10.27761/d.cnki.gaqsf. 2023. 000195. | |
[79] | 申永鹏, 孙建彬, 王延峰, 等. 电动汽车混合储能装置小波功率分流方法[J]. 中国电机工程学报, 2021, 41(13): 4636-4646. DOI: 10. 13334/j.0258-8013.pcsee.201327. |
SHEN Y P, SUN J B, WANG Y F, et al. Power distribution method of wavelet for hybrid energy storage systems in an electric vehicle[J]. Proceedings of the CSEE, 2021, 41(13): 4636-4646. DOI: 10. 13334/j.0258-8013.pcsee.201327. | |
[80] | ZHANG X, MI C C, MASRUR A, et al. Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor[J]. Journal of Power Sources, 2008, 185(2): 1533-1543. DOI: 10. 1016/j.jpowsour.2008.08.046. |
[1] | SUN Shuwei, ZHAO Huiling, YU Caiyan, BAI Ying. Experimental measurement and analysis of Raman/infrared methods for lithium batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 975-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||