Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (4): 607-622.doi: 10.12028/j.issn.2095-4239.2017.0076
XIAO Anna1, YUAN Qingchun 2
Received:
2017-05-15
Online:
2017-07-01
Published:
2017-06-13
Contact:
YUAN Qingchun, lecturer in chemical engineering, research in the development of advanced materials for energy and environment applications. E-mail: q.yuan@aston.ac.uk.
About author:
XIAO Anna (1991—), female, project engineer, interested in new technologies and materials, sustainable energy and applications.
XIAO Anna1, YUAN Qingchun 2. Phase change microcapsules in thermal Energy applications: A critical review[J]. Energy Storage Science and Technology, 2017, 6(4): 607-622.
[1] KASZA K E, CHEN M M. Improvement of the performance of solar energy or waste heat utilization systems by using phase-change slurry as an enhanced heat-transfer storage fluid[J]. J. Sol. Energy Eng., 1985, 107(3): 229-236. [2] CUNHA J P D, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials—A review[J]. Applied Energy, 2016, 177: 227-238. [3] ORO E, De GARCÍA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. [4] BORREGUERO A M, VALVERDE J L, RODRÍGUEZ J F, et al. Synthesis and CHARACTERIzation of microcapsules containing Rubitherm®RT27 obtained by spray drying[J]. Chemical Engineering Journal, 2011, 166: 384-390. [5] HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003, 74: 195-202. [6] GAONKAR A G, VASISHT N, KHARE A R, SOBEL R EDITED. Microencapsulation in the food industry[J]. A Practical Implementation Guide, 2014 : 125-137. [7] MALEKIPIRBAZARI M, SADRAMELI S M, DORKOOSH F, et al. Synthetic and physical characterization of phase change materials microencapsulated by complex coacervation for thermal energy storage applications[J]. Int. J. Energ. Res., 2014, 38: 1492-500. [8] GHOSH S K. Functional coatings and microencapsulation: A general perspective. Functional coatings[J]. Wiley-VCH Verlag gmbh & Co. Kgaa, 2006: 1-28. [9] NIHANT N, STASSEN S, GRANDFILS C, et al. Microencapsulation by coacervation of poly(lactide-co-glycolide). III. Characterization of the final microspheres[J]. Polym. Int., 1994, 34: 289-299. [10] BAYÉS-GARCÍA L, VENTOLÀ L, CORDOBILLA R, et al. Phase change materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability[J]. Solar Energy Materials and Solar Cells, 2010, 94: 1235-1240. [11] ÖZONUR Y, MAZMAN M, PAKSOY H Ö, et al. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material[J]. Int. J. Energy Res., 2006, 30: 741-749. [12] JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renew. Sust. Energ. Rev., 2014, 31: 531-542. [13] FANG Y T, LIU X, LIANG X H, et al. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage[J]. Applied Energy, 2014, 132: 551-556. [14] WANG T, LI H, LU Q L, et al. Preparation and characterization of Glauber's salt microcapsules for thermal energy storage[J]. Tenside, Surfactants, Detergents, 2017, 54(1): 32-37. [15] HAN P, QIU X, LU L, et al. Fabrication and characterization of a new enhanced hybrid shell micro PCM for thermal energy storage[J]. Energy Conversion and Management, 2016, 126: 673-685. [16] QIU X, LU L, HAN P, et al. Fabrication, thermal property and thermal reliability of microencapsulated paraffin with ethyl methacrylate-based copolymer shell[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124: 1291-1299. [17] DAI X, YUAN W. Preparation and characterisation of doubleshell n-octadecane phase change material encapsulation[J]. Materials Research Innovations, 2016, 20 (6): 433-438. [18] WANG G X, XU WB, HOU Q, et al. Microwave-assisted synthesis of poly(urea-formaldehyde)/lauryl alcohol phase change energy storage microcapsules[J]. Polymer Science-Series B, 2016, 58(3): 321-328. [19] ZHAN S, CHEN S, CHEN L, et al. Preparation and characterization of polyurea microencapsulated phase change material by interfacial polycondensation method[J]. Powder Technology, 2016, 292: 217-222. [20] KONUKLU Y, PAKSOY H Ö. Polystyrene-based caprylic acid microencapsulation for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 159: 235-242. [21] SUN N, XIAO Z. Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage[J]. Journal of Materials Science, 2016, 51(18): 8550-8561. [22] YANG Y, KUANG J, WANG H, et al. Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy[J]. Solar Energy Materials and Solar Cells, 2016, 151: 89-95. [23] LIU J, CHEN L, FANG X, et al. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2017, 159: 159-166. [24] WANG T, WANG S, GENG L, et al. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network[J]. Applied Energy, 2016, 179: 601-608. [25] ZHANG L, ZHANG Y, XU H, et al. Polymer/graphene oxide composite microcapsules with greatly improved barrier properties[J]. RSC Advances, 2016, 6(9): 7618-7625. [26] TAGUCHI Y, MORITA R, SAITO N, et al. Formation of Pickering emulsion by use of PCM and SiC and application to preparation of hybrid microcapsules with interfacial polycondensation reaction[J]. Polymers for Advanced Technologies, 2016, 27(4): 422-428. [27] ZHANG X, WANG X, WU D. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness[J]. Energy, 2016, 111: 498-512. [28] JIN Y, LEE W P, MUSINA Z, et al. A one-step method for producing microencapsulated phase change materials[J]. Particuology, 2010, 8: 588-590. [29] CAO L, TANG F, FANG G. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials[J]. Sol. Energy Mater. Sol. Cells, 2014, 123: 183-188. [30] FANG G, LI H, LIU X, et al. Experimental investigation of performances of microcapsule phase change material for thermal energy storage[J]. Chem. Eng. Technol., 2010, 33: 227-230. [31] TANG F, LIU L, ALVA G, et al. Synthesis and properties of microencapsulated octadecane with silica shell as shape-stabilized thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2017, 160: 1-6. [32] PENG K, FU L, LI X, et al. Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage[J]. Applied Clay Science, 2017, 138: 100-106. [33] ZHAO L, WANG H, LUO J, et al. Fabrication and properties of microencapsulated n-octadecane with TiO2 shell as thermal energy storage materials[J]. Solar Energy, 2016, 127: 28-35. [34] GONDORA W, DOUDIN K, NOWAKOWSKI D J, et al. Encapsulation of phase change materials using rice-husk-char[J]. Applied Energy, 2016, 182: 274-281. [35] DAO T D, JEONG H M. A Pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon, 2016, 99: 49-57. [36] WANG T, WANG S, LUO R, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113-119. [37] LI J, LU W, LUO Z, ZENG Y. Synthesis and thermal properties of novel sodium nitrate microcapsules for high-temperature thermeal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 159: 440-446. [38] TYAGI V V, KAUSHIK S C, TYAGI S K, et al. Development of phase change materials based microencapsulated technology for buildings: A review[J]. Renew. Sust. Energ. Rev., 2011, 15: 1373-91. [39] SCHMIDT M. Phase change materials – latent heat storage for interior climate control[J]. In: BASF, editor. Ludwigshafen, Germany, 2007. [40] Cool Buildings with Micronal®PCM[J]. In: BASF, editor. Germany, 2014. [41] CASTELLÓN C, MEDRANO M, ROCA J, et al. Use of microencapsulated phase change materials in building applications[J]. University of Lleida, Spain, 2007. [42] YOU M, ZHANG X X, LI W, et al. Effect of microPCMs on the fabrication of microPCMs/polyurethane composites foams[J]. Thermochimica Acta, 2008, 472: 20-24. [43] ZHAO C Y, ZHANG G H. Review on mocroencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2011,15(8): 3813-3832. [44] SALAMONE J J, MEWMAN M. Heat transfer design characteristics: Water suspension of solids[J]. Ind. Eng. Chem., 1955, 47: 283-288. [45] SOHN C W, CHEN M M. Microconvective thermal conductivity in disperse two-phase mixtures as observed in a low velocity couette flow experiment[J]. J. Heat Transfer, 1981, 103(1): 47-51. [46] AHUJA A S. Augmentation of heat transport in laminar flow of polystyrene suspensions. I Experiment and results[J]. J. Applied Physics, 1975, 46: 3408-3416. [47] WEN D S, DING Y L. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[J]. International Journal of Heat and Mass Transfer, 2004, 47(24): 5181-5188. [48] ZHAO Z, HAO R, SHI Y. Parametric analysis of enhanced heat transfer for laminar flow of microencapsulated phase change suspension in a circular tube with constant wall temperature[J]. Heat Transfer Engineering, 2008, 29: 97-106. [49] YAMAGISHI Y, TAKEUCHI H, PYATENKO A T, et al. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid[J]. AIChE Journal, 1999, 45: 696-707. [50] DELGADO M, LAZARO A, MAZO J, et al. Experimental analysis of microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow[J]. Applied Thermal Engineering, 2012, 36: 370-377. [51] CHARUNYAKORN P, SENGUPTA S, ROY S K. Forced convection heat transfer in microencapsulated phase change material slurries: Flow in circular ducts[J]. International Journal of Heat and Mass Transfer, 1991, 34: 819-833. [52] GOEL M, ROY S K, SENGUPTA S. Laminar forced convective heat transfer in microencapsulated phase change material suspensions: Flow in circular ducts[J]. Int. J. Heat Transfer, 1994, 37: 593-604. [53] LIU L, ALVA G, JIA Y, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51. [54] EUNSOO C, CHO Y I, LORSCH H G. Forced convection heat transfer with phase-change-material slurries: Turbulent flow in a circular tube[J]. International Journal of Heat and Mass Transfer, 1994, 37: 207-215. [55] WANG X, NIU J, LI Y, et al. Flow and heat transfer behaviours of phase change material slurries in a horizontal circular tube[J]. Int. J. of Heat and Mass Transfer, 2007, 50: 2480-2491. [56] WANG X, NIU J, LI Y, et al. Heat transfer of microencapsulated PCM slurry flow in a circular tube[J]. AIChE Journal, 2008, 54: 1110-1120. [57] HE Y, JIN Y, CHEN H, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50: 2272-2281 |
[1] | LIU Ruijian, LIANG Kunfeng, JIA Xueying, WANG Lin. Dynamic crystallization characteristics of the working process of small type ice slurry maker [J]. Energy Storage Science and Technology, 2019, 8(1): 138-145. |
[2] | ZHANG Bin1,2, CHEN Yongchong1, ZHANG Yanping1, FENG Caimei1,2, LIU Dandan1, HE Yingyuan1,2. The international patent technology analysis on lithium slurry battery#br# [J]. Energy Storage Science and Technology, 2017, 6(5): 1000-1007. |
[3] | YIN Shaowu1,2, LI Hongkun1, JIA Zhenxiong1, WANG Li1,2, TONG Lige1,2. Experimental study on rapid preparation of ice storage appilications [J]. Energy Storage Science and Technology, 2017, 6(4): 701-707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||