In-situ/operando characterization techniques for oxygen evolution in acidic media
YANG Jiahao,1,2, SHI Zhaoping1,2, WANG Yibo1,2, GE Junjie,1,2, LIU Changpeng1,2, XING Wei1,2
1.School of Applied Chemistry and Engineering University of Science and Technology of China, Hefei 230026, Anhui, China
2.Laboratory of Advanced Power Sources, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, Jilin, China
The anode catalysts used in proton exchange membrane (PEM) water electrolysis must be resistant to the harsh oxidation environment that occurs during the oxygen evolution reaction (OER). The investigation and application of in-situ/operando characterization techniques are critical for developing acidic OER catalysts with high stability and activity. Herein, several in-situ/operando characterization techniques for acidic OER research are introduced, including in-situ/operando X-ray photoelectron spectroscopy, in-situ/operando X-ray absorption spectroscopy, in-situ/operando X-ray diffraction/scattering, in-situ/operando electrochemical infrared spectroscopy, in-situ/operando electrochemical Raman spectroscopy, in-situ/operando inductively coupled plasma mass spectrometry, differential electrochemical mass spectrometry/on-line electrochemical mass spectrometry, in-situ/operando electro-chemical infrared spectroscopy, in-situ/operando electrochemical Raman spectroscopy, in-situ/operando inductively coupled plasma mass spectrometry, differential electrochemical mass spectrometry/on-line electrochemical mass spectrometry, electrochemical quartz crystal microbalance. Special attention is paid to the device structure and application value of these in-situ/operando characterization techniques for OER in acidic media. Finally, the characteristics of these techniques are summarized, and the challenges for the development of in-situ characterization techniques, such as the development of new techniques and the combination of in-situ techniques, the improvement of in-situ devices, and space-time resolution, are highlighted.
YANG Jiahao. In-situ/operando characterization techniques for oxygen evolution in acidic media[J]. Energy Storage Science and Technology, 2021, 10(6): 1877-1890
Fig. 6
(a) scanning flow cell setup; (b) applied voltage and dissolution profile of Pt;(c) the stationary probe rotating disk electrode (SPRDE) setup; (d) dissolution profiles of Ir and Os[61, 65-66]
LIN H Y, WU Q W, CHEN X Y, et al. Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China[J]. Renewable Energy, 2021, 173: 569-580.
SHI Z P, WANG X, GE J J, et al. Fundamental understanding of the acidic oxygen evolution reaction: Mechanism study and state-of-the-art catalysts[J]. Nanoscale, 2020, 12(25): 13249-13275.
CHEN Z J, DUAN X G, WEI W, et al. Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives[J]. Nano Energy, 2020, 78: 105392.
JIN H, JOO J, CHAUDHARI N K, et al. Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions[J]. ChemElectroChem, 2019, 6(13): 3244-3253.
KUMAR A. Hybrid energy option for a local community in punjab- A case study on sustainable energy[J]. International Journal for Research in Applied Science and Engineering Technology, 2019, 7(12): 442-446.
SHAN J Q, ZHENG Y, SHI B Y, et al. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation[J]. ACS Energy Letters, 2019, 4(11): 2719-2730.
SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214.
LI Y J, SUN Y J, QIN Y N, et al. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials[J]. Advanced Energy Materials, 2020, 10(11): 1903120.
FAN M, LIANG X, CHEN H, et al. Low-iridium electrocatalysts for acidic oxygen evolution[J]. Dalton Transactions Cambridge, England, 2020, 49(44): 15568-15573.
LIU Y P, LIANG X, CHEN H, et al. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chinese Journal of Catalysis, 2021, 42(7): 1054-1077.
GU X K, CAMAYANG J C A, SAMIRA S, et al. Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities[J]. Journal of Catalysis, 2020, 388: 130-140.
SONG H J, YOON H, JU B, et al. Highly efficient perovskite-based electrocatalysts for water oxidation in acidic environments: A mini review[J]. Advanced Energy Materials, 2021, 11(27): 2002428.
SIWAL S S, YANG W Q, ZHANG Q B. Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media[J]. Journal of Energy Chemistry, 2020, 51: 113-133.
REIER T, NONG H N, TESCHNER D, et al. Electrocatalytic oxygen evolution reaction in acidic environments—Reaction mechanisms and catalysts[J]. Advanced Energy Materials, 2017, 7(1): 1601275.
LI L, WANG P, SHAO Q, et al. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction[J]. Advanced Materials (Deerfield Beach, Fla), 2021: e2004243.
ARRIGO R, HÄVECKER M, SCHUSTER M E, et al. In situ study of the gas-phase electrolysis of water on platinum by NAP-XPS[J]. Angewandte Chemie (International Ed in English), 2013, 52(44): 11660-11664.
SANCHEZ CASALONGUE H G, NG M L, KAYA S, et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 53(28): 7169-7172.
PFEIFER V, JONES T E, VELASCO VÉLEZ J J, et al. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces[J]. Chemical Science, 2017, 8(3): 2143-2149.
YU L W, TAKAGI Y, NAKAMURA T, et al. Non-contact electric potential measurements of electrode components in an operating polymer electrolyte fuel cell by near ambient pressure XPS[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(45): 30798-30803.
RAO R R, KOLB M J, HWANG J, et al. Surface orientation dependent water dissociation on rutile ruthenium dioxide[J]. The Journal of Physical Chemistry C, 2018, 122(31): 17802-17811.
SAVELEVA V A, WANG L, KASIAN O, et al. Insight into the mechanisms of high activity and stability of iridium supported on antimony-doped tin oxide aerogel for anodes of proton exchange membrane water electrolyzers[J]. ACS Catalysis, 2020, 10(4): 2508-2516.
LUO E G, CHU Y Y, LIU J, et al. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: Progress and prospects[J]. Energy & Environmental Science, 2021, 14(4): 2158-2185.
PARK J, CHO J. Advances in understanding mechanisms of perovskites and pyrochlores as electrocatalysts using in situ X-ray absorption spectroscopy[J]. Angewandte Chemie (International Ed in English), 2020, 59(36): 15314-15324.
FANG L Z, SEIFERT S, WINANS R E, et al. Operando XAS/SAXS: Guiding design of single-atom and subnanocluster catalysts[J]. Small Methods, 2021, 5(5): 2001194.
TIMOSHENKO J, ROLDAN CUENYA B. In situ/Operando electrocatalyst characterization by X-ray absorption spectroscopy[J]. Chemical Reviews, 2021, 121(2): 882-961.
WANG M Y, ÁRNADÓTTIR L, XU Z J, et al. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts[J]. Nano-Micro Letters, 2019, 11(1): 1-18.
BINNINGER T, FABBRI E, PATRU A, et al. Electrochemical flow-cell setup for in situ X-ray investigations[J]. Journal of the Electrochemical Society, 2016, 163(10): H906-H912.
NONG H N, REIER T, OH H S, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts[J]. Nature Catalysis, 2018, 1(11): 841-851.
REKSTEN A H, RUSSELL A E, RICHARDSON P W, et al. An in situ XAS study of high surface-area IrO2 produced by the polymeric precursor synthesis[J]. Physical Chemistry Chemical Physics, 2020, 22(34): 18868-18881.
GORYACHEV A, CARLÀ F, DRNEC J, et al. Synchrotron based operando surface X-ray scattering study towards structure-activity relationships of model electrocatalysts[J]. ChemistrySelect, 2016, 1(5): 1104-1108.
HARLOW G S, LUNDGREN E, ESCUDERO-ESCRIBANO M. Recent advances in surface X-ray diffraction and the potential for determining structure-sensitivity relations in single-crystal electrocatalysis[J]. Current Opinion in Electrochemistry, 2020, 23: 162-173.
MASUDA T, KONDO T. New sights into the electrochemical interface provided by in situ X-ray absorption fine structure and surface X-ray scattering[J]. Current Opinion in Electrochemistry, 2019, 14: 81-88.
FENG J H, KRIECHBAUM M, LIU L E. In situ capabilities of Small Angle X-ray Scattering[J]. Nanotechnology Reviews, 2019, 8(1): 352-369.
CORNELIUS T W, THOMAS O. Progress of in situ synchrotron X-ray diffraction studies on the mechanical behavior of materials at small scales[J]. Progress in Materials Science, 2018, 94: 384-434.
PFEIFER V, JONES T E, VELASCO VÉLEZ J J, et al. The electronic structure of iridium and its oxides[J]. Surface and Interface Analysis, 2016, 48(5): 261-273.
RAO R R, KOLB M J, HALCK N B, et al. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution[J]. Energy & Environmental Science, 2017, 10(12): 2626-2637.
RAO R R, KOLB M J, GIORDANO L, et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces[J]. Nature Catalysis, 2020, 3(6): 516-525.
GUERRERO-PÉREZ M O, PATIENCE G S. Experimental methods in chemical engineering: Fourier transform infrared spectroscopy-FTIR[J]. The Canadian Journal of Chemical Engineering, 2020, 98(1): 25-33.
WANG H, ZHOU Y W, CAI W B. Recent applications of in situ ATR-IR spectroscopy in interfacial electrochemistry[J]. Current Opinion in Electrochemistry, 2017, 1(1): 73-79.
CHEN W, YU A, SUN Z J, et al. Probing complex eletrocatalytic reactions using electrochemical infrared spectroscopy[J]. Current Opinion in Electrochemistry, 2019, 14: 113-123.
BIEBERLE-HÜTTER A, BRONNEBERG A C, GEORGE K, et al. Operando attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy for water splitting[J]. Journal of Physics D: Applied Physics, 2021, 54(13): 133001.
YAO Y C, HU S L, CHEN W X, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nature Catalysis, 2019, 2(4): 304-313.
NAYAK S, MCPHERSON I J, VINCENT K A. Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy[J]. Angewandte Chemie International Edition, 2018, 57(39): 12855-12858.
SU H, ZHAO X, CHENG W R, et al. Hetero-N-coordinated co single sites with high turnover frequency for efficient electrocatalytic oxygen evolution in an acidic medium[J]. ACS Energy Letters, 2019, 4(8): 1816-1822.
ZHAO X, SU H, CHENG W R, et al. Operando insight into the oxygen evolution kinetics on the metal-free carbon-based electrocatalyst in an acidic solution[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34854-34861.
CAO L, LUO Q, CHEN J, et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nature Communications, 2019, 10(1): 4849.
HESS C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions[J]. Chemical Society Reviews, 2021, 50(5): 3519-3564.
ZHANG H, DUAN S, RADJENOVIC P M, et al. Core-shell nanostructure-enhanced Raman spectroscopy for surface catalysis[J]. Accounts of Chemical Research, 2020, 53(4): 729-739.
WANG X T, GUO L. SERS activity of semiconductors: Crystalline and amorphous nanomaterials[J]. Angewandte Chemie International Edition, 2020, 59(11): 4231-4239.
ZOU S Z, CHAN H Y H, WILLIAMS C T, et al. Formation and stability of oxide films on platinum-group metals in electrochemical and related environments as probed by surface-enhanced Raman spectroscopy: Dependence on the chemical oxidant[J]. Langmuir, 2000, 16(2): 754-763.
YEO B S, KLAUS S L, ROSS P N, et al. Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold[J]. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 2010, 11(9): 1854-1857.
DIAZ-MORALES O, CALLE-VALLEJO F, DE MUNCK C, et al. Electrochemical water splitting by gold: Evidence for an oxide decomposition mechanism[J]. Chemical Science, 2013, 4(6): 2334-2343.
YANG S X, HETTERSCHEID D G H. Redefinition of the active species and the mechanism of the oxygen evolution reaction on gold oxide[J]. ACS Catalysis, 2020, 10(21): 12582-12589.
SHAN J, YE C, CHEN S, et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. Journal of the American Chemical Society, 2021, 143(13): 5201-5211.
KASIAN O, GEIGER S, MAYRHOFER K J J, et al. Electrochemical on-line ICP-MS in electrocatalysis research[J]. Chemical Record (New York), 2019, 19(10): 2130-2142.
SPÖRI C, KWAN J T H, BONAKDARPOUR A, et al. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation[J]. Angewandte Chemie (International Ed in English), 2017, 56(22): 5994-6021.
TOPALOV A A, KATSOUNAROS I, AUINGER M, et al. Dissolution of platinum: Limits for the deployment of electrochemical energy conversion?[J]. Angew Chem Int Ed Engl, 2012, 51(50): 12613-12615.
CHEREVKO S, ZERADJANIN A R, TOPALOV A A, et al. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.
TOPALOV A A, CHEREVKO S, ZERADJANIN A R, et al. Towards a comprehensive understanding of platinum dissolution in acidic media[J]. Chemical Science, 2014, 5(2): 631-638.
HODNIK N, JOVANOVIČ P, PAVLIŠIČ A, et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media[J]. The Journal of Physical Chemistry C, 2015, 119(18): 10140-10147.
KIM Y T, LOPES P P, PARK S A, et al. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts[J]. Nature Communications, 2017, 8(1): 1449.
LOPES P P, STRMCNIK D, TRIPKOVIC D, et al. Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments[J]. ACS Catalysis, 2016, 6(4): 2536-2544.
GEIGER S, KASIAN O, LEDENDECKER M, et al. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nature Catalysis, 2018, 1(7): 508-515.
LU J, HUA X, LONG Y T. Recent advances in real-time and in situ analysis of an electrode-electrolyte interface by mass spectrometry[J]. The Analyst, 2017, 142(5): 691-699.
ABD-EL-LATIF A A, BONDUE C J, ERNST S, et al. Insights into electrochemical reactions by differential electrochemical mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2015, 70: 4-13.
CHURCHILL C R, HIBBERT D B. Kinetics of the electrochemical evolution of isotopically enriched gases. Part 1.—18O16O evolution on platinum in acid and alkaline solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1982, 78(10): 2937.
WILLSAU J, WOLTER O, HEITBAUM J. Does the oxide layer take part in the oxygen evolution reaction on platinum?: A DEMS study[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 195(2): 299-306.
WOHLFAHRT-MEHRENS M, HEITBAUM J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 237(2): 251-260.
MACOUNOVA K, MAKAROVA M, KRTIL P. Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2-δ electrodes-DEMS approach to reaction mechanism determination[J]. Electrochemistry Communications, 2009, 11(10): 1865-1868.
STOERZINGER K A, DIAZ-MORALES O, KOLB M, et al. Orientation-dependent oxygen evolution on RuO2 without lattice exchange[J]. ACS Energy Letters, 2017, 2(4): 876-881.
KASIAN O, GEIGER S, LI T, et al. Degradation of iridium oxides via oxygen evolution from the lattice: Correlating atomic scale structure with reaction mechanisms[J]. Energy & Environmental Science, 2019, 12(12): 3548-3555.
ZHANG L, WANG L, WEN Y, et al. Boosting neutral water oxidation through surface oxygen modulation[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(31): e2002297.
WANG C, WANG Z Y, KE W. Application of the quartz crystal microbalance technique in corrosion research[J]. International Journal of Corrosion and Scale Inhibition, 2020, 9(1): doi:10.17675/2305-6894-2020-9-1-6.
SHPIGEL N, LEVI M D, SIGALOV S, et al. In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring[J]. Accounts of Chemical Research, 2018, 51(1): 69-79.
ŁUKASZEWSKI M, CZERWIŃSKI A. Dissolution of noble metals and their alloys studied by electrochemical quartz crystal microbalance[J]. Journal of Electroanalytical Chemistry, 2006, 589(1): 38-45.
FRYDENDAL R, PAOLI E A, KNUDSEN B P, et al. Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses[J]. ChemElectroChem, 2014, 1(12): 2075-2081.
ESCUDERO-ESCRIBANO M, PEDERSEN A F, PAOLI E A, et al. Importance of surface IrOx in stabilizing RuO2 for oxygen evolution[J]. The Journal of Physical Chemistry B, 2018, 122(2): 947-955.
... [61, 65-66](a) scanning flow cell setup; (b) applied voltage and dissolution profile of Pt;(c) the stationary probe rotating disk electrode (SPRDE) setup; (d) dissolution profiles of Ir and Os[61, 65-66]Fig. 6
... , 65-66](a) scanning flow cell setup; (b) applied voltage and dissolution profile of Pt;(c) the stationary probe rotating disk electrode (SPRDE) setup; (d) dissolution profiles of Ir and Os[61, 65-66]Fig. 6
... -66](a) scanning flow cell setup; (b) applied voltage and dissolution profile of Pt;(c) the stationary probe rotating disk electrode (SPRDE) setup; (d) dissolution profiles of Ir and Os[61, 65-66]Fig. 6