Carbon dioxide energy storage (CES) technology is a new physical technology that is based on compressed air energy storage (CAES) and the Brayton power-generation cycle. It has high energy-storage density, long operation life, and compact-system equipment. In addition, it has good development and application prospects. This paper introduces the working principle and basic characteristics of a carbon dioxide energy-storage system and identifies the calculation method and evaluation effect of system round-trip efficiency (RTE) and energy storage density (ESD). The research status of thermoelectrical carbon dioxide energy storage (TE-CES), transcritical carbon dioxide energy storage (TC-CES), supercritical carbon dioxide energy storage (SC-CES), liquid carbon dioxide energy storage (LCES), and the carbon dioxide energy-storage system coupled with other energy systems are summarized by discussing recent relevant domestic and development processes of carbon dioxide energy-storage technology. In addition, the advantages, disadvantages, and adaptive application scenarios of different systems are identified. The research direction, key technologies, and main challenges of carbon dioxide energy storage are summarized. Finally, it identifies the development prospects of carbon dioxide energy storage in technology research and multiscenario application. Presently, a comprehensive analysis shows that the research on carbon dioxide energy-storage technology is mostly theoretical. We need to focus on system optimization design, experimental verification, and industrialized application. Carbon dioxide energy-storage technology is expected to obtain greater development space in the future power energy-storage market.
Keywords:large scale long-term energy storage
;
carbon dioxide energy storage
;
key technologies
;
development prospect
HAO Jiahao. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296
目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能。其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题[7]。压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力[8]。传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高[9]。近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)[10]、超临界压缩空气储能系统(SC-CAES)[11]、液态空气储能系统(LAES)[12]等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好。但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m3)、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升。
为了进一步提高储能系统的储能效率与能量密度,相关学者提出了以CO2为工质的二氧化碳储能(carbon dioxide energy storage,CES)系统,由于CO2临界点(7.39 MPa和31.4 ℃)相对空气(3.77 MPa和-140.5 ℃)容易达到,无毒、不易燃、安全等级为A1,且超临界二氧化碳(S-CO2)具有优良的热力学性质:黏度小、密度大、导热性能好,系统寄生能耗也相对较低[13-14]。基于常规储能设计参数,表1展示了不同压力和对应温度下空气和CO2的密度大小,可以看出,相同状态和压力下CO2储存密度均大于空气,其中液态储存时最高,从而使得CES系统具有较高的储能潜力。
ESD反映了储能系统储能工质单位储存容积时储能容量的大小,也可称为单位体积发电量(energy generated per unit volume,EVR)。如式(2)所示,ESD为系统输出电能和储存设备总容积之比,由于超临界CO2和液态CO2密度远大于空气,所以二氧化碳储能系统的储能密度具有较大优势,使得系统工质储存容积和设备成本显著降低。
将CO2作为工质并应用于储能系统最早是2012年由瑞士洛桑埃尔科尔理工大学的Morandin教授[15]提出,他设计了一种基于热水蓄热、冰浆蓄冷的二氧化碳电热储能(thermo-electrical carbon dioxide energy storage,TE-CES)系统,并基于换热器网络编写了系统优化算法。如图2所示,该系统的工作原理是:在储能过程中,电能驱动热泵系统压缩机将CO2压缩至超临界态,并将CO2内能通过蓄热罐进行储存,即将电能以热能形式储存;在释能过程中,CO2吸收蓄热器热能,再进入膨胀机做功,即将热能转化为电能输出。
基于压缩空气储能系统的研究与应用,中国科学院工程热物理研究所杨科等[19]提出了以CO2为工质的压缩二氧化碳储能系统。根据系统透平出口压力,可具体分为跨临界二氧化碳储能(transcritical carbon dioxide energy storage,TC-CES)和超临界二氧化碳(supercritical carbon dioxide energy storage systems,SC-CES)储能系统,若透平出口压力低于临界压力称为TC-CES系统,若高于临界压力则称为SC-CES系统。目前,关于这两种系统的研究相对较多,主要研究机构包括中科院工程热物理所、华北电力大学、西安交通大学、华中科技大学等,但主要还停留在系统理论设计和性能分析阶段。
LU C. Opening a new era of major changes in China's energy system and innovative development of clean and renewable energy—Deeply understanding the great historical significance of the targets of carbon peak and carbon neutralization[J]. Frontiers, 2021(14): 28-41.
Energy Research Institute of National Development and Reform Commission. Research on development scenarios and approaches of high proportion renewable energy in China in 2050 [R]. Beijing: National Development and Reform Commission, 2015.
National Energy Administration. 2022 national energy work conference held in Beijing [EB/OL]. (2021-12-24)[2022-01-15]. http://www.nea.gov.cn/2021-12/24/c_1310391378.htm.
Energy Research Institute of National Development and Reform Commission. 2020 China renewable energy outlook report [R]. Beijing: National Development and Reform Commission, 2021.
CHEN S, ZHU T, GAN Z X, et al. Optimization of operation strategies for a combined cooling, heating and power system based on adiabatic compressed air energy storage[J]. Journal of Thermal Science, 2020, 29(5): 1135-1148.
HUNT J D, ZAKERI B, LOPES R, et al. Existing and new arrangements of pumped-hydro storage plants[J]. Renewable and Sustainable Energy Reviews, 2020, 129: doi: 10.1016/j.rser.2020.109914.
JI L, CHEN H S, ZHANG X J, et al. Research and development status and application prospect of compressed air energy storage technology[J]. High-Technology & Industrialization, 2018(4): 52-58.
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
CHEN Y M, LI Z. Analysis on the development trend and features of smart energy sources[J]. Journal of Chinese Society of Power Engineering, 2020, 40(10): 852-858, 864.
ANTONELLI M, DESIDERI U, GIGLIOLI R, et al. Liquid air energy storage: A potential low emissions and efficient storage system[J]. Energy Procedia, 2016, 88: 693-697.
CHAE Y J, LEE J I. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: doi: 10.1016/j.enconman.2022.115374.
KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable Energy Technologies and Assessments, 2015, 11: 159-164.
MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-Part B: Alternative system configurations[J]. Energy, 2012, 45(1): 386-396.
KIM Y M, SHIN D G, LEE S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501.
LA FAUCI R, KAFFE E, KIENZLE F, et al. Feasibility study of an electrothermal energy storage in the city of zurich[C]//22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013). Stockholm, Sweden. Institution of Engineering and Technology, 2013: 1-5.
ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503.
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115: 167-177.
ZHAO P, DAI Y P, WANG J F. Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle[J]. Energy Conversion and Management, 2015, 103: 562-572.
LIU H. Research on thermodynamic and thermoeconomic properties of super-critical compressed carbon dioxide energy storage[D]. Beijing: North China Electric Power University, 2017.
HE Q, HAO Y P, LIU W Y. Thermodynamic analysis and improvement of novel trans-critical compressed carbon dioxide energy storage system[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(5): 93-101.
HAO Y P. Research on thermodynamic and techno-economic properties of trans-critical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2021.
LIU Q S, GE J, HUANG B H, et al. Influence of energy storage pressure on the characteristics of liquid air energy storage system[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 1-9.
LIU S C, WU S C, HU Y K, et al. Comparative analysis of air and CO2 as working fluids for compressed and liquefied gas energy storage technologies[J]. Energy Conversion and Management, 2019, 181: 608-620.
PENG H, ZHANG D, LING X, et al. n-alkanes phase change materials and their microencapsulation for thermal energy storage: A critical review[J]. Energy & Fuels, 2018, 32(7): 7262-7293.
AN B L, CHEN J X, WANG J J, et al. Study on the influencing factors on liquid air energy storage system liquefaction rate[J]. Journal of Engineering Thermophysics, 2019(11): 2478-2482.
HE Z R, QI W, SONG J T, et al. The thermodynamic analysis of a liquefied air energy storage system coupled with liquefied natural gas[J]. Energy Storage Science and Technology, 2021, 10(5): 1589-1596.
WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823.
XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: do: 10.1016/j.applthermaleng.2020.116153.
CAO Z, DENG J Q, ZHOU S H, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211: doi: 10.1016/j.enconman.2020.112788.
LEE I, PARK J, MOON I. Key issues and challenges on the liquefied natural gas value chain: A review from the process systems engineering point of view[J]. Industrial & Engineering Chemistry Research, 2018, 57(17): 5805-5818.
ZHAO P, XU W P, ZHANG S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: A pathway towards realizability[J]. Energy Conversion and Management, 2021, 229: doi: 10.1016/j.enconman.2020.113679.
... 目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能.其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题[7].压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力[8].传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高[9].近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)[10]、超临界压缩空气储能系统(SC-CAES)[11]、液态空气储能系统(LAES)[12]等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好.但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m3)、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升. ...
1
... 目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能.其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题[7].压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力[8].传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高[9].近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)[10]、超临界压缩空气储能系统(SC-CAES)[11]、液态空气储能系统(LAES)[12]等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好.但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m3)、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升. ...
1
... 目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能.其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题[7].压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力[8].传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高[9].近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)[10]、超临界压缩空气储能系统(SC-CAES)[11]、液态空气储能系统(LAES)[12]等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好.但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m3)、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升. ...
1
... 目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能.其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题[7].压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力[8].传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高[9].近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)[10]、超临界压缩空气储能系统(SC-CAES)[11]、液态空气储能系统(LAES)[12]等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好.但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m3)、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升. ...
1
... 目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能.其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题[7].压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力[8].传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高[9].近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)[10]、超临界压缩空气储能系统(SC-CAES)[11]、液态空气储能系统(LAES)[12]等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好.但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m3)、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升. ...
1
... 目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能.其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题[7].压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力[8].传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高[9].近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)[10]、超临界压缩空气储能系统(SC-CAES)[11]、液态空气储能系统(LAES)[12]等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好.但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m3)、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升. ...
1
... 目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能.其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题[7].压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力[8].传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高[9].近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)[10]、超临界压缩空气储能系统(SC-CAES)[11]、液态空气储能系统(LAES)[12]等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好.但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m3)、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升. ...
2
... 为了进一步提高储能系统的储能效率与能量密度,相关学者提出了以CO2为工质的二氧化碳储能(carbon dioxide energy storage,CES)系统,由于CO2临界点(7.39 MPa和31.4 ℃)相对空气(3.77 MPa和-140.5 ℃)容易达到,无毒、不易燃、安全等级为A1,且超临界二氧化碳(S-CO2)具有优良的热力学性质:黏度小、密度大、导热性能好,系统寄生能耗也相对较低[13-14].基于常规储能设计参数,表1展示了不同压力和对应温度下空气和CO2的密度大小,可以看出,相同状态和压力下CO2储存密度均大于空气,其中液态储存时最高,从而使得CES系统具有较高的储能潜力. ...