1 |
卢纯. 开启我国能源体系重大变革和清洁可再生能源创新发展新时代——深刻理解碳达峰、碳中和目标的重大历史意义[J]. 人民论坛·学术前沿, 2021(14): 28-41.
|
|
LU C. Opening a new era of major changes in China's energy system and innovative development of clean and renewable energy—Deeply understanding the great historical significance of the targets of carbon peak and carbon neutralization[J]. Frontiers, 2021(14): 28-41.
|
2 |
国家发改委能源研究所. 中国2050高比例可再生能源发展情景暨途径研究[R]. 北京: 国家发改委, 2015.
|
|
Energy Research Institute of National Development and Reform Commission. Research on development scenarios and approaches of high proportion renewable energy in China in 2050 [R]. Beijing: National Development and Reform Commission, 2015.
|
3 |
国家能源局. 2022年全国能源工作会议在京召开 [EB/OL].(2021-12-24)[2022-01-15]. http://www.nea.gov.cn/2021-12/24/c_1310391378.htm.
|
|
National Energy Administration. 2022 national energy work conference held in Beijing [EB/OL]. (2021-12-24)[2022-01-15]. http://www.nea.gov.cn/2021-12/24/c_1310391378.htm.
|
4 |
国家发改委能源研究所. 2020年中国可再生能源展望报告[R].北京: 国家发改委, 2021.
|
|
Energy Research Institute of National Development and Reform Commission. 2020 China renewable energy outlook report [R]. Beijing: National Development and Reform Commission, 2021.
|
5 |
CHEN S, ZHU T, GAN Z X, et al. Optimization of operation strategies for a combined cooling, heating and power system based on adiabatic compressed air energy storage[J]. Journal of Thermal Science, 2020, 29(5): 1135-1148.
|
6 |
严晓辉, 徐玉杰, 纪律, 等. 我国大规模储能技术发展预测及分析[J]. 中国电力, 2013, 46(8): 22-29.
|
|
YAN X H, XU Y J, JI L, et al. Forecasting and analysis on large-scale energy storage technologies in China[J]. Electric Power, 2013, 46(8): 22-29.
|
7 |
HUNT J D, ZAKERI B, LOPES R, et al. Existing and new arrangements of pumped-hydro storage plants[J]. Renewable and Sustainable Energy Reviews, 2020, 129: doi: 10.1016/j.rser.2020.109914.
|
8 |
纪律, 陈海生, 张新敬, 等. 压缩空气储能技术研发现状及应用前景[J]. 高科技与产业化, 2018(4): 52-58.
|
|
JI L, CHEN H S, ZHANG X J, et al. Research and development status and application prospect of compressed air energy storage technology[J]. High-Technology & Industrialization, 2018(4): 52-58.
|
9 |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
|
10 |
CHEN Y M, LI Z. Analysis on the development trend and features of smart energy sources[J]. Journal of Chinese Society of Power Engineering, 2020, 40(10): 852-858, 864.
|
11 |
SZABLOWSKI L, KRAWCZYK P, BADYDA K, et al. Energy and exergy analysis of adiabatic compressed air energy storage system[J]. Energy, 2017, 138: 12-18.
|
12 |
ANTONELLI M, DESIDERI U, GIGLIOLI R, et al. Liquid air energy storage: A potential low emissions and efficient storage system[J]. Energy Procedia, 2016, 88: 693-697.
|
13 |
CHAE Y J, LEE J I. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: doi: 10.1016/j.enconman.2022.115374.
|
14 |
KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable Energy Technologies and Assessments, 2015, 11: 159-164.
|
15 |
MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-Part B: Alternative system configurations[J]. Energy, 2012, 45(1): 386-396.
|
16 |
MERCANGÖZ M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45(1): 407-415.
|
17 |
KIM Y M, SHIN D G, LEE S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501.
|
18 |
LA FAUCI R, KAFFE E, KIENZLE F, et al. Feasibility study of an electrothermal energy storage in the city of zurich[C]//22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013). Stockholm, Sweden. Institution of Engineering and Technology, 2013: 1-5.
|
19 |
杨科, 张远, 李雪梅, 等. 一种以二氧化碳为工质的压缩气体储能系统:中国,CN203420754U[P]. 2014.
|
|
YANG K, ZHANG Y, LI X M, et al. A compressed gas energy storage system with carbon dioxide as working medium: China, CN203420754U[P]. 2014.
|
20 |
ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503.
|
21 |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115: 167-177.
|
22 |
ZHAO P, DAI Y P, WANG J F. Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle[J]. Energy Conversion and Management, 2015, 103: 562-572.
|
23 |
刘辉. 超临界压缩二氧化碳储能系统热力学特性与热经济性研究[D]. 北京: 华北电力大学(北京), 2017.
|
|
LIU H. Research on thermodynamic and thermoeconomic properties of super-critical compressed carbon dioxide energy storage[D]. Beijing: North China Electric Power University, 2017.
|
24 |
何青, 郝银萍, 刘文毅. 一种新型跨临界压缩二氧化碳储能系统热力分析与改进[J]. 华北电力大学学报(自然科学版), 2020, 47(5): 93-101.
|
|
HE Q, HAO Y P, LIU W Y. Thermodynamic analysis and improvement of novel trans-critical compressed carbon dioxide energy storage system[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(5): 93-101.
|
25 |
郝银萍. 跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究[D]. 北京: 华北电力大学(北京), 2021.
|
|
HAO Y P. Research on thermodynamic and techno-economic properties of trans-critical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2021.
|
26 |
刘青山, 葛俊, 黄葆华, 等. 储能压力对液态压缩空气储能系统特性的影响[J]. 西安交通大学学报, 2019, 53(11): 1-9.
|
|
LIU Q S, GE J, HUANG B H, et al. Influence of energy storage pressure on the characteristics of liquid air energy storage system[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 1-9.
|
27 |
LIU S C, WU S C, HU Y K, et al. Comparative analysis of air and CO2 as working fluids for compressed and liquefied gas energy storage technologies[J]. Energy Conversion and Management, 2019, 181: 608-620.
|
28 |
PENG H, ZHANG D, LING X, et al. n-alkanes phase change materials and their microencapsulation for thermal energy storage: A critical review[J]. Energy & Fuels, 2018, 32(7): 7262-7293.
|
29 |
安保林, 陈嘉祥, 王俊杰, 等. 液态空气储能系统液化率影响因素研究[J]. 工程热物理学报, 2019(11): 2478-2482.
|
|
AN B L, CHEN J X, WANG J J, et al. Study on the influencing factors on liquid air energy storage system liquefaction rate[J]. Journal of Engineering Thermophysics, 2019(11): 2478-2482.
|
30 |
何子睿, 齐伟, 宋锦涛, 等. 耦合液化天然气的液化空气储能系统热力学分析[J]. 储能科学与技术, 2021, 10(5): 1589-1596.
|
|
HE Z R, QI W, SONG J T, et al. The thermodynamic analysis of a liquefied air energy storage system coupled with liquefied natural gas[J]. Energy Storage Science and Technology, 2021, 10(5): 1589-1596.
|
31 |
WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823.
|
32 |
吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3): 45-49, 100.
|
|
WU Y, HU D S, WANG M K, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi'an Jiaotong University, 2016, 50(3): 45-49, 100.
|
33 |
XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: do: 10.1016/j.applthermaleng.2020.116153.
|
34 |
CAO Z, DENG J Q, ZHOU S H, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211: doi: 10.1016/j.enconman.2020.112788.
|
35 |
天工. 《中国天然气发展报告(2021)》发布[J]. 天然气工业, 2021, 41(8): 68.
|
|
TIAN G. China natural gas development report (2021) released[J]. Natural Gas Industry, 2021, 41(8): 68.
|
36 |
LEE I, PARK J, MOON I. Key issues and challenges on the liquefied natural gas value chain: A review from the process systems engineering point of view[J]. Industrial & Engineering Chemistry Research, 2018, 57(17): 5805-5818.
|
37 |
ZHAO P, XU W P, ZHANG S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: A pathway towards realizability[J]. Energy Conversion and Management, 2021, 229: doi: 10.1016/j.enconman.2020.113679.
|