储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1492-1501.doi: 10.19799/j.cnki.2095-4239.2021.0522

• 储能系统与工程 • 上一篇    下一篇

利用环境再冷的二氧化碳储能热电联产系统及其热力学分析

陶飞跃1(), 王焕然1, 李瑞雄1(), 赵静2, 葛刚强1, 贺新1, 陈昊1   

  1. 1.西安交通大学能源与动力工程学院,陕西 西安 710049
    2.中国运载火箭技术研究院,北京 100076
  • 收稿日期:2021-10-10 修回日期:2021-12-10 出版日期:2022-05-05 发布日期:2022-05-07
  • 通讯作者: 李瑞雄 E-mail:18401625622@163.com;ruixiong.li@xjtu.edu.cn
  • 作者简介:陶飞跃(1997—),男,硕士研究生,研究方向压缩二氧化碳储能,E-mail:18401625622@163.com

Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling

Feiyue TAO1(), Huanran WANG1, Ruixiong LI1(), Jing ZHAO2, Gangqiang GE1, Xin HE1, Hao CHEN1   

  1. 1.School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    2.China Academy of Launch Vehicle Technology, Beijing 100076, China
  • Received:2021-10-10 Revised:2021-12-10 Online:2022-05-05 Published:2022-05-07
  • Contact: Ruixiong LI E-mail:18401625622@163.com;ruixiong.li@xjtu.edu.cn

摘要:

为提升光电出力特性及灵活性,构建光储协同系统成为改善光电可调度性与减少弃光的主流趋势。本文基于光伏电场运营环境特点,提出一种利用夜间环境冷量再冷的二氧化碳储能热电联产系统,重点分析了不同运行模式下系统性能随关键参数的变化规律。结果表明:太阳能集热系统单独工作模式下,增大蓄冷回热器最小温差、夜间环境温度和低压罐压力会导致系统性能降低,而增大高压罐压力和膨胀机进口温度会提升系统性能;太阳能集热系统和热泵系统联合工作模式下,系统设计工况下的电电效率、?效率和循环效率分别为71.4%、57.4%和87.1%,储能密度为17.2 kW·h/m3,太阳能保证率比太阳能集热系统单独工作时下降了35.6%,蓄冷回热器、一级再热器等换热设备?损较大,是系统优化的关键部件;热泵系统参与工作的模式下,热泵蒸发温度和冷凝器热水出口温度的变化对电电效率影响较大,对?效率影响不大。

关键词: 热电联产, 液态二氧化碳储能系统, 热泵, 太阳能保证率

Abstract:

To improve photovoltaic power output and flexibility, the construction of optical storage cooperative systems has become the mainstream trend for enhancing photovoltaic schedulability and reducing photovoltaic power curtailment. Based on the characteristics of the operating environment of the photovoltaic farm, a combined heat and power system is proposed coupled with carbon dioxide energy storage utilizing nighttime environmental cooling. Furthermore, the effect of key thermodynamic parameters on system performance under different operating modes is mainly studied. The results demonstrate that the increase of minimum temperature difference of the cool storage unit, ambient temperature at night, and the low-pressure tank pressure harms the system performance. In contrast, the increase of high-pressure tank pressure and expander inlet temperature positively affects the mode of the solar heat collection system, which works independently. In the combined working mode of the solar collector and heat pump systems, the electric energy storage, exergy, and round trip efficiencies under the design condition can reach 71.4%, 57.4%, and 87.1%, respectively, and energy storage density is 17.18 kW·h/m3. The solar factor is reduced by 35.6% compared to when the solar heat collection system is working alone. Moreover, the cool storage unit, first reheater, and heat exchanger 1 have a significant exergy loss and are the critical components for system optimization. Variations in the heat pump evaporation temperature and condenser hot water outlet temperature have a greater impact on the electrical efficiency in the mode where the heat pump system participates but has little effect on the exergy efficiency.

Key words: combined heating and power, liquid carbon dioxide energy storage, heat pump, solar factor

中图分类号: