储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 598-610.doi: 10.19799/j.cnki.2095-4239.2020.0385

• 储能系统与工程 • 上一篇    下一篇

火电厂热电联产机组与压缩空气储能集成系统能量耦合特性分析

王晓露1,2(), 郭欢1,2, 张华良1,2,4, 徐玉杰1,2,3, 刘英军5, 陈海生1,2,3()   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.中国科学院大学工程科学学院,北京 100049
    3.国家能源大规模物理储能技术(毕节)研发中心,贵州 毕节 551712
    4.中科院工程热物理研究所南京未来能源系统研究院,江苏 南京 210000
    5.工业和信息化部产业发展促进中心,北京 100846
  • 收稿日期:2020-11-27 修回日期:2020-12-25 出版日期:2021-03-05 发布日期:2021-03-05
  • 作者简介:王晓露(1995—),女,硕士研究生,研究方向为分布式供能、储能与节能,E-mail:wangxiaolu@iet.cn|陈海生,研究员,研究方向为压缩空气储能、蓄冷蓄热等物理储能技术,E-mail:chen_hs@iet.cn
  • 基金资助:
    国家重点研发计划(2017YFB0903605);国家自然科学基金项目(51706222);中国科学院国际合作局国际伙伴计划(182211KYSB20170029);贵州省大规模物理储能技术研发平台能力建设(黔科合服企[2019]4011);分布式冷热电联供系统北京重点实验室

Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants

Xiaolu WANG1,2(), Huan GUO1,2, Hualiang ZHANG1,2,4, Yujie XU1,2,3, Yingjun LIU5, Haisheng CHEN1,2,3()   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2.School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
    3.National Energy Large Scale Physical Energy Storage Technologies R&D Center (Bijie), Bijie 551712, Guizhou, China
    4.Nanjing Institute of Future Energy Systems, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Nanjing 210000, Jiangsu, China
    5.Industry Development and Promotion Center Ministry of Industry and Information Technology of the People's Republic of China, Beijing 100846, China
  • Received:2020-11-27 Revised:2020-12-25 Online:2021-03-05 Published:2021-03-05

摘要:

为了提高火电厂热电联产机组调节灵活性,同时增加系统调峰能力和可再生能源入网比例,本工作提出一种热电联产机组与压缩空气储能系统集成的新方案。该方案在强化供热阶段采用压缩空气储能系统储存电能并利用压缩热供热,提高系统供热比例;强化供电阶段利用热电联产机组抽汽加热膨胀机入口空气,提高系统发电比例。该方案相对于参比系统的?效率可提升4%~31.4%,热电比也得到了明显拓宽。研究比较了不同部件参数对系统热效率、?效率及热电解耦性能的影响,并在此基础上对几种采暖工况基本点进行?分析。结果显示:压缩空气储能系统的空气流量对新型集成系统的热效率、?效率影响较大,而膨胀机入口空气温度对新型集成系统的热电比影响较大;随着进入汽轮机主蒸汽流量的增大,系统总过程?效率、热效率分别增大5%、8%左右;?损失分析则显示锅炉部件?损失占比最大,为20%左右,其次是冷源损失,为10%左右。

关键词: 压缩空气储能, 热电联产, 热电解耦, ?分析

Abstract:

A new scheme for integrating cogeneration units and compressed air energy storage systems is proposed to improve the regulation flexibility of cogeneration units in thermal power plants and increase the peak load regulation capacity of systems and the proportion of renewable energy into the grid. In the enhanced heating stage, a compressed air energy storage system is used to store electric energy, and the compressed heat is used for heating to improve the heating ratio of the system. In the enhanced power supply stage, the extraction steam of a cogeneration unit is used to heat the inlet air of the expander to increase the power generation ratio of the system. Compared with that of the reference system, the scheme's exergy efficiency can be increased by 4%—31.4%, and the heat to power ratio has been widened. The effects of different component parameters on the thermal efficiency, exergy efficiency, and thermoelectric decoupling performance of the system are compared. On this basis, the basic points of several heating conditions are analyzed. The results show that the airflow rate of the compressed air energy storage system has a great influence on the thermal efficiency of the new integrated system, whereas the inlet air temperature of the expander has a greater impact on the thermoelectric ratio of the new integrated system. With the increase in the main steam flow into the steam turbine, the system's total process efficiency and thermal efficiency increase by 5% and 8%, respectively. The loss analysis shows the loss of boiler components. The largest proportion is about 20%, followed by cold source loss, which is about 10%.

Key words: compressed air energy storage, cogeneration, thermoelectric decoupling, exergy analysis

中图分类号: