储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1607-1613.doi: 10.19799/j.cnki.2095-4239.2021.0344

• 物理储能十年专刊·压缩空气 • 上一篇    下一篇

基于峰谷分时电价的压缩空气储能系统热经济性分析

胡珊1(), 刘畅1, 徐玉杰1,2, 陈海生1,2,3(), 郭欢4   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.中国科学院大学,北京 100049
    3.中科南京未来能源系统研究院,江苏 南京 211135
    4.毕节高新技术产业开发区国家能源大规模物理储能技术研发中心,贵州 毕节 551712
  • 收稿日期:2021-07-14 修回日期:2021-08-06 出版日期:2021-09-05 发布日期:2021-09-08
  • 作者简介:胡珊(1986—),女,高级工程师,主要研究方向为储能技术热经济性,E-mail:hushan@iet.cn|陈海生,研究员,主要研究方向为压缩空气储能技术,E-mail:chen_hs@mail.etp.ac.cn
  • 基金资助:
    国家杰出青年科学基金项目(51925604);中国科学院国际合作局国际伙伴计划项目(182211KYSB20170029);贵州省科技计划项目(黔科合基础[2017]1160号)

Thermo-economic analysis of compressed air energy storage under peak load shaving condition

Shan HU1(), Chang LIU1, Yujie XU1,2, Haisheng CHEN1,2,3(), Huan GUO4   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Science, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Nanjing Institute of Future Energy System, Nanjing 211135, Jiangsu, China
    4.National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-tech Industrial Development Zone, Bijie 551712, Guizhou, China
  • Received:2021-07-14 Revised:2021-08-06 Online:2021-09-05 Published:2021-09-08

摘要:

压缩空气储能系统被认为是最具发展前景的大规模电力储能技术之一,本文采用?与经济学分析相结合的方法,建立了压缩空气储能系统热经济性分析模型。针对先进蓄热式压缩空气储能系统服务于执行峰谷分时电价的电力系统运行情景,开展了热经济分析。结果表明,该系统热经济性是可行的;能量成本在总成本中占绝大多数,非能量成本中,储气子系统占比最大,其次为压缩子系统,最后为膨胀子系统,其中压缩子系统?损率最高;压缩子系统优化带来的系统输出?单价降低最为明显,其次为储气和膨胀子系统,故系统从热经济学角度进行优化,应首先集中在对压缩机的优化上。本文的研究将为压缩空气储能系统的研究和工程应用提供技术经济决策的参考和依据。

关键词: 压缩空气储能, 热经济学模型, ?分析

Abstract:

Compressed-air energy storage (CAES) is one of the most promising large-scale electrical energy storage technologies. In this study, the method of exergy and economic analysis was adopted, a thermo-economic model for CAES systems was developed. The model was employed to analyze an advanced regenerative CAES system operating in a power system with a time-of-use electricity price. The results show that the system is thermo-economically feasible. Energy cost accounts for a greater portion of the total cost. For the non-energy cost, the gas storage subsystem accounts for the highest proportion, followed by the compression subsystem. Optimizing the compression subsystem significantly reduced the exergy price of the system output, followed by the storage and expansion subsystems. Therefore, to optimize the system, the thermoeconomics of the compressor should first be considered. This study provides technical and economic decision-making reference and basis for research and engineering applications of CAES systems.

Key words: compressed air energy storage, thermal-economic model, exergy analysis

中图分类号: