储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1824-1834.doi: 10.19799/j.cnki.2095-4239.2021.0348

• 物理储能十年专刊·新物理储能 • 上一篇    下一篇

超临界二氧化碳储能系统损特性分析

李乐璇1,2(), 徐玉杰1,2,3, 尹钊1,2,3, 郭欢1,2,3, 张显荣1,4, 陈海生1,2,3(), 周学志3()   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.中国科学院大学,北京 100049
    3.毕节高新技术产业开发区国家能源大规模物理储能技术研发中心,贵州 毕节 551712
    4.华北电力大学,北京 102206
  • 收稿日期:2021-07-15 修回日期:2021-08-04 出版日期:2021-09-05 发布日期:2021-09-08
  • 作者简介:李乐璇(1997—),女,硕士研究生,主要研究方向为超临界二氧化碳储能系统,E-mail:lilexuan@iet.cn|陈海生,研究员,主要研究方向为压缩空气储能、蓄冷蓄热等物理储能技术,E-mail:chen_hs@iet.cn|周学志,高级工程师,主要研究方向为储热技术和压缩空气储能技术,E-mail:zhouxuezhi@iet.cn
  • 基金资助:
    国家杰出青年科学基金项目(51925604);中国科学院国际合作局国际伙伴计划项目(182211KYSB20170029);贵州省科技计划项目(黔科合基础[2019]1282号)

Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system

Lexuan LI1,2(), Yujie XU1,2,3, Zhao YIN1,2,3, Huan GUO1,2,3, Xianrong ZHANG1,4, Haisheng CHEN1,2,3(), Xuezhi ZHOU3()   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Science, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-tech Industrial Development Zone, Bijie 551712, Guizhou, China
    4.School of Energy Power and Mechanical Engineering, Beijing 102206, China
  • Received:2021-07-15 Revised:2021-08-04 Online:2021-09-05 Published:2021-09-08

摘要:

储能是实现可再生能源大规模利用的关键支撑技术,而超临界压缩二氧化碳储能(SC-CCES)系统具有设备紧凑、高效、安全等优点,被认为是具有发展前景的大规模储能技术之一。本文建立了SC-CCES系统传统?分析和先进?分析模型,揭示了系统各过程、部件?损大小及其原因,以及内源性/外源性与可避免/不可避免?损特性,获得了不同过程、部件间的相互关联。分析结果显示:SC-CCES系统效率可达60.30%;压缩机是?损失最大的环节,占总?损失的33.85%,其次为膨胀机、节流阀、间冷器和再热器;根据先进?分析,压缩机、膨胀机仍具有最高的可避免?损,节流阀和混流器则几乎不具备优化潜力。此外,本文还对系统进行了灵敏性分析,揭示了储/释能压力、压缩机和膨胀机效率等参数对系统性能的影响规律。本文的研究为SC-CCES系统优化设计及应用提供了参考。

关键词: 超临界压缩二氧化碳储能系统, 二氧化碳循环, 热力性能, 先进?分析

Abstract:

Energy storage is an important technology to realize the large-scale utilization of renewable energy sources; however, the supercritical compressed carbon dioxide energy storage (SC-CCES) system has advantages of compact equipment, high efficiency and security, and it is one of the most promising large-scale energy storage technologies. The models of conventional and advanced exergy analysis of SC-CCES are established in order to the investigate exergy destruction in each process and component of the system, and its causes are revealed. The characteristics of avoidable/unavoidable and endogenous/exogenous exergy destruction, correlations among different processes and components are determined. The simulation results show that the system efficiency is 60.30%. Considering the components, compressors exhibit the largest exergy destruction, accounting for 33.85% of the total exergy destruction, followed by the expander, throttle valve, cooler, recuperator, mixer and heater. For advanced exergy analysis, the compressor and expander still exhibit the highest avoidable exergy destruction, whereas the throttle valve and mixer have a small potential. As the endogenous/exogenous exergy analysis show, the exogenous exergy destruction of almost all components only accounted for a small part of the total destruction, which means the interactions between the components are weak. In a short word, advanced exergy analysis method might lead to a different optimization priority and indicate the interactions between components, which are weak and intricate at the same time. The advanced exergy analysis is a powerful complement to conventional exergy analysis. Furthermore, sensitivity investigations revealed the effects of energy charge/discharge pressure, compressor and expander efficiency on the system performance. It's obvious that high charge/discharge pressure and small heat exchange temperature differences bring a positive influence on the performance of the system. The research in this paper provides a reference for SC-CCES optimization design and application.

Key words: supercritical compressed carbon dioxide energy storage system, CO2 cycle, thermodynamic performance, advanced exergy analysis

中图分类号: