储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1556-1564.doi: 10.19799/j.cnki.2095-4239.2021.0346

• 物理储能十年专刊·压缩空气 • 上一篇    下一篇

基于析湿系数法活塞压缩机级间变工况析水特性

徐冉1(), 左志涛1(), 黎翱1, 王霞1, 陈明1, 陈海生1,2   

  1. 1.毕节高新技术产业开发区国家能源大规模物理储能技术研发中心,贵州 毕节 551712
    2.中国科学院工程热物理研究所,北京 100190
  • 收稿日期:2021-07-14 修回日期:2021-08-02 出版日期:2021-09-05 发布日期:2021-09-08
  • 作者简介:徐冉(1991—),男,中级实验师,研究方向为动力机械及工程,E-mail:xuran@lses.cn|左志涛,高级工程师,主要研究方向为动力机械及工程、物理储能及叶轮机械等,E-mail:zuozhitao@iet.cn
  • 基金资助:
    毕节市科技支撑计划项目(毕科合字[2017]16号);贵州省科学技术基金(黔科合基础[2019]1442号);贵州省平台及人才团队建设计划项目(黔科合平台人才[2017]5308);贵州省大规模物理储能工程研究中心(黔发改高技[2017]951号);贵州省大规模物理储能技术研发平台能力建设(黔科合服企[2019]4011);贵州省科技支撑项目(黔科合支撑[2020]2Y064)

Water evolution characteristics of piston compressors under varying operating conditions based on the moisture separation coefficient

Ran XU1(), Zhitao ZUO1(), Ao LI1, Xia WANG1, Ming CHEN1, Haisheng CHEN1,2   

  1. 1.Bijie National Energy Large Scale Physical Energy Storage Technology R&D Center, Bijie 551712, Guizhou, China
    2.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2021-07-14 Revised:2021-08-02 Online:2021-09-05 Published:2021-09-08

摘要:

压缩空气储能系统膨胀吸热过程使压缩空气中水蒸气结冰,不仅会对膨胀机叶片造成机械损坏,而且影响膨胀机性能。开展储能子系统中多级活塞压缩机级间析水特性研究,为压缩系统设计以及膨胀机入口前压缩空气预处理提供参考。首先综合考虑压缩因子和增强因子,采用析湿系数法对析水过程进行理论推导,得出各级析水量的表达式,然后建立压缩机管网特性试验平台,对压缩机各级吸、排气压力,吸、排气温度、排气量、分离器液位等参数进行采样,开展在变工况条件下压缩机各级析水特性研究。结果表明压缩机排气压力从1.5 MPa增大到9.0 MPa时,湿空气经过第一级压缩机时,液态水未析出;经过其他四级压缩后,二级析水量最大,其余各级依次递减;各级析水量理论与试验研究的结果误差在0~10%左右波动。

关键词: 压缩空气储能系统, 活塞压缩机, 级间析水过程, 湿空气

Abstract:

The expansion and heat absorption process in compressed-air energy storage (CAES) systems cause water vapor in the compressed air to freeze, which not only causes mechanical damage to the expander blades but also affects the expander performance. Herein, the interstage water evolution characteristics of multistage piston compressors in the energy storage subsystem are investigated to provide a reference for designing compressor systems and pretreatment of the compressed air before the inlet of the expander. First, the compression and enhancement factors are comprehensively considered, and the water evolution process is derived using the method of moisture evolution coefficient. The expressions of water evolution at different levels were obtained, and the suction and exhaust pressure and temperature, exhaust volume, separator level, and other parameters were sampled. The water evolution characteristics at each stage of the compressor were examined under various operating conditions. As the exhaust pressure of the compressor increased from 1.5 to 9.0 MPa, liquid water was not precipitated when the wet air passed through the first stage of the compressor. The theoretical and experimental results of water discharge at different stages vary from 0 to 10%.

Key words: compressed air energy storage, piston compressor, interstage condensed water, humidity air

中图分类号: