1 |
国家能源局发布《2021年能源工作指导意见》[J]. 中国电力企业管理, 2021(12): 6.National Energy Administration issued "Guiding Opinions on Energy Work in 2021"[J]. China Electric Power Enterprise Management, 2021(12): 6.
|
2 |
XU X F, WEI Z F, JI Q, et al. Global renewable energy development: Influencing factors, trend predictions and countermeasures[J]. Resources Policy, 2019, 63: doi: 10.1016/j.resourpol.2019.101470.
|
3 |
KUBIK M L, COKER P J, BARLOW J F. Increasing thermal plant flexibility in a high renewables power system[J]. Applied Energy, 2015, 154: 102-111.
|
4 |
王伟, 徐婧, 赵翔, 等. 中国煤电机组调峰运行现状分析[J]. 南方能源建设, 2017, 4(1): 18-24.WANG W, XU J, ZHAO X, et al. Analysis on peak load regulation status quo for coal-fired power plants in china[J]. Southern Energy Construction, 2017, 4(1): 18-24.
|
5 |
YAÏCI W, GHORAB M, ENTCHEV E, et al. Three-dimensional unsteady CFD simulations of a thermal storage tank performance for optimum design[J]. Applied Thermal Engineering, 2013, 60(1/2): 152-163.
|
6 |
孙晓丽, 鹿院卫, 崔锡民, 等. 熔融盐单罐储热系统释热传热规律研究[J]. 工程热物理学报, 2016, 37(5): 1032-1037.SUN X L, LU Y W, CUI X M, et al. Heat discharge research of molten salt in single energy storage tank[J]. Journal of Engineering Thermophysics, 2016, 37(5): 1032-1037.
|
7 |
ZHANG H W, LIANG W B, LIU J Q, et al. Modeling and energy efficiency analysis of thermal power plant with high temperature thermal energy storage (HTTES)[J]. Journal of Thermal Science, 2020, 29(4): 1025-1035.
|
8 |
VERDA V, COLELLA F. Primary energy savings through thermal storage in district heating networks[J]. Energy, 2011, 36(7): 4278-4286.
|
9 |
KATULIĆ S, ČEHIL M, BOGDAN Ž. A novel method for finding the optimal heat storage tank capacity for a cogeneration power plant[J]. Applied Thermal Engineering, 2014, 65(1/2): 530-538.
|
10 |
RINNE S, SYRI S. The possibilities of combined heat and power production balancing large amounts of wind power in Finland[J]. Energy, 2015, 82: 1034-1046.
|
11 |
罗海华, 张后雷, 刘文涛, 等. 基于熔盐蓄热的亚临界火电机组工业供热调峰技术[J]. 暖通空调, 2020, 50(10): 71-75.LUO H H,ZHANG H L,LIU W T,et al.Peak regulation technology for industrial heating of subcriticial thermal power units based on molten salt heat storage[J]. Heating Ventilating & Air Conditioning, 2020, 50(10): 71-75.
|
12 |
闫百涛, 刘冠杰. 固体储热与燃煤发电系统耦合的数值模拟分析[J]. 工业加热, 2020,49(5): 29-33.YAN B T, LIU G J. Numerical simulation and analysis of coupling solid heat storage with coal-fired power generation system[J]. Industrial Heating, 2020, 49(5): 29-33.
|
13 |
王惠杰, 董学会, 杨杰, 等. 基于Aspen Plus的配置储热装置供热机组调峰范围研究[J]. 汽轮机技术, 2019, 61(2): 131-135.WANG H J, DONG X H, YANG J, et al. Study on peak shaving rang of heat storage units based on aspen plus[J]. Turbine Technology, 2019, 61(2): 131-135.
|
14 |
TROJAN M, TALER D, DZIERWA P, et al. The use of pressure hot water storage tanks to improve the energy flexibility of the steam power unit[J]. Energy, 2019, 173: 926-936.
|
15 |
LI D C, WANG J H. Study of supercritical power plant integration with high temperature thermal energy storage for flexible operation[J]. Journal of Energy Storage, 2018, 20: 140-152.
|
16 |
GARBRECHT O, BIEBER M, KNEER R. Increasing fossil power plant flexibility by integrating molten-salt thermal storage[J]. Energy, 2017, 118: 876-883.
|
17 |
庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8): 2682-2691.
|
|
PANG L P, ZHANG S G, DUAN L Q. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8): 2682-2691.
|
18 |
董学会. 配置蓄热装置的供热机组灵活性分析[D]. 北京: 华北电力大学, 2019.DONG X H. Analysis of the flexibility of the heating unit with the heat storage device[D]. Beijing: North China Electric Power University, 2019.
|
19 |
DONG Y L, JIANG X, LIANG Z H, et al. Coal power flexibility, energy efficiency and pollutant emissions implications in China: A plant-level analysis based on case units[J]. Resources, Conservation and Recycling, 2018, 134: 184-195.
|
20 |
WOJCIK J, WANG J H. Technical feasibility study of thermal energy storage integration into the conventional power plant cycle[J]. Energies, 2017, 10(2): 205.
|
21 |
凌浩恕, 何京东, 徐玉杰, 等. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(3): 861-868.LING H S, HE J D, XU Y J, et al. Status and prospect of thermal energy storage technology for clean heating[J]. Energy Storage Science and Technology, 2020, 9(3): 861-868.
|
22 |
侯丹. 基于Aspen Plus的㶲分析在火电厂清洁生产实践中的应用[D]. 大连: 大连理工大学, 2011.HOU D. Exergy analysis applied in thermal power plant, cleaner product practice based on Aspen Plus[D]. Dalian: Dalian University of Technology, 2011.
|
23 |
杨红霞. 背压式热电联产热力系统优化[D]. 上海: 上海交通大学, 2018.YANG H X. Thermodynamic system optimization of combinde heat and power plant with back-pressure steam turbine[D]. Shanghai: Shanghai Jiaotong University, 2018.
|