1 |
ERDINC O, UZUNOGLU M. Optimum design of hybrid renewable energy systems: overview of different approaches[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1412-1425.
|
2 |
鲍德佑. 太阳能-氢能系统的发展前景[J]. 太阳能学报, 1995(1): 114-120.
|
|
BAO Deyou. Development prospect of solar-hydrogen energy system[J]. Acta Energiae Solaris Sinica, 1995(1): 114-120.
|
3 |
YUKSEL Y E, OZTURK M, Dincercd I. Thermodynamic performance assessment of a novel environmentally-benign solar energy based integrated system[J]. Energy Conversion and Management, 2018, 119: 109-120.
|
4 |
KARAPEKMEZ A, DINCER I. Thermodynamic analysis of a novel solar and geothermal based combined energy system for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 45(9): 5608-5628.
|
5 |
DANESHPOUR R, MEHRPOOYA M. Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production[J]. Energy Conversion and Management, 2018, 176: 274-286.
|
6 |
蔡国伟, 孔令国, 彭龙, 等. 基于氢储能的主动型光伏发电系统建模与控制[J]. 太阳能学报, 2016, 37(10): 2451-2459.CAI Guowei, KONG Lingguo, PENG Long, et al. Modeling and control of active photovoltaic power generation system based on hydrogen energy storage[J]. Acta Energiae Solaris Sinica, 2016, 37(10): 2451-2459.
|
7 |
JOSHI A S, DINCER I, REDDY B V. Effects of various parameters on energy and exergy efficiencies of a solar thermal hydrogen production system[J]. International Journal of Hydrogen Energy, 2016, 41: 7997-8007.
|
8 |
MOHAMMADI A, MEHRPOOYA M. Techno-economic analysis of hydrogen production by solid oxide electrolyzer coupled with dish collector[J]. Energy Conversion and Management, 2018, 173: 167-178.
|
9 |
倪萌, LEUNG M Kwok Hi, SUMATHY K Y. 电解水制氢技术进展[J]. 能源环境保护, 2004(5): 5-9.NI Meng, LEUNG M Kwok Hi, SUMATHY K Y. Progress in hydrogen production from electrolyzed water[J]. Energy Environmental Protection, 2004(5): 5-9.
|
10 |
贾磊, 江斌, 陈则韶, 等. 利用低温冷能温差发电及电解水制氢氧的实验研究[J]. 工程热物理学报, 2006(S1): 53-56.JIA Lei, JIANG Bin, CHEN Zeshao, et al. Experimental study on the use of low temperature cold energy temperature difference power generation and electrolysis of water to produce hydrogen and oxygen[J]. Journal of Engineering Thermophysics, 2006(S1): 53-56.
|
11 |
王雅倩, 任娜, 徐宗磊, 等. 电/热/气多能转换的可逆固体氧化物燃料电池信息物理融合建模与仿真[J]. 电网技术, 2018, 42(11): 3535-3542.WANG Yaqian, REN Na, XU Zonglei, et al. Modeling and simulation of information fusion of reversible solid oxide fuel cell with electric/hot/gas multi-energy conversion[J]. Power System Technology, 2018, 42(11): 3535-3542.
|
12 |
MEHRPOOYA M, DEHGHANI H, MOOSAVIAN S M A. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system[J]. Journal of Power Sources, 2016, 306: 107-123.
|
13 |
NI Meng, LEUNG M Kwok Hi, LEUNG D Yiu Cheong. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2305-2313.
|
14 |
杜凤丽, 原郭丰, 常春, 等. 太阳能热发电技术产业发展现状与展望[J]. 储能科学与技术, 2013, 2(6): 551-564.DU Fengli, YUAN Guofeng, CHANG Chun, et al. Concentrating solar power: current status and perspective[J]. Energy Storage Science and Technology, 2013, 2(6): 551-564.
|
15 |
LAMY C. From hydrogen production by water electrolysis to its utilization in a PEM fuel cell or in a SO fuel cell: Some considerations on the energy efficiencies[J]. International Journal of Hydrogen Energy, 2016, 41: 15415-15425.
|