1 |
徐丹, 赵晓军. 锂离子动力电池模组设计浅析[J]. 电源世界, 2017(2): 26-29.
|
|
XU Dan, ZHAO Xiaojun. Simple analysis on design of Li-ion battery module[J]. The World of Power Supply, 2017(2): 26-29.
|
2 |
杨重科, 冯富春, 李彦良, 等. 电池模组模态优化分析[J]. 电源世界, 2017(6): 37-39.
|
|
YANG Zhongke, FENG Fuchun, LI Yanliang, et al. Modal optimization analysis of battery module[J]. The World of Power Supply, 2017(6): 37-39.
|
3 |
王炎, 高青, 王国华, 等. 混流集成式电池组热管理温度均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1347.
|
|
WANG Yan, GAO Qing, WANG Guohua, et al. Simulation of mixed inner air-flow integrated thermal management with temperature uniformity of Li-ion battery[J]. Journal of Jilin University(Engineering and Techonlogy Edition), 2018, 48(5): 1339-1347.
|
4 |
欧阳剑, 张平, 李菁, 等. 电动汽车用智能锂离子电池模组的设计与实现[J]. 机械工程与自动化, 2018(6): 24-26.
|
|
OUYANG Jian, ZHANG Ping, LI Jing, et al. Design and implementation of intelligent lithium-ion battery module for electric vehicle[J]. Mechanical Engineering&Automation, 2018(6): 24-26.
|
5 |
彭佳悦, 刘亚利, 黄杰, 等. 锂离子电池基础科学问题(Ⅺ)—锂空气电池与锂硫电池[J]. 储能科学与技术, 2014, 3(5): 526-543.
|
|
PENG Jiayue, LIU Yali, HUANG Jie, et al. Fundamental scientific aspects of lithium ion batteries(Ⅺ)—Lithium air and lithium sulfur batteries[J]. Energy Storage Science and Technology, 2014, 3(5): 526-543.
|
6 |
张茜, 周浩兵, 刘雨辰, 等. 车用锂离子电池包结构优化设计研究进展[J]. 电源技术, 2019, 43(9): 1559-1562.
|
|
ZHANG Qian, ZHOU Haobing, LIU Yuchen, et al. Research progress of structural optimization design of lithium ion battery pack for vehicle[J]. Chinese Journal of Power Sources, 2019, 43(9): 1559-1562.
|
7 |
郭小强, 郝永辉, 徐瑞芬, 等. 锂离子电池组耐大量级力学的结构设计和优化[J]. 电源技术, 2014, 38(5): 822-825.
|
|
GUO Xiaoqiang, HAO Yonghui, XU Ruifen, et al. Structure design and optimization of lithium-ion battery enduring high-level mechanics[J]. Chinese Journal of Power Sources, 2014, 38(5): 822-825.
|
8 |
CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): doi: 10.1038/natrevmats.2016.13.
|
9 |
CHEN H, ZHOU G, BOYLE D, et al. Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium-sulfur battery[J]. Matter, 2020: doi: 10.1016/j.matt.2020.04.011.
|
10 |
GOODENOUGH J B, MANTHIRAM A. A perspective on electrical energy storage[J]. MRS Communications, 2014, 4(4):135-142.
|
11 |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262.
|
12 |
MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
|
13 |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29.
|
14 |
MANTHIRAM A, CHUNG S H, ZU C X, Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27: 1980-2006.
|
15 |
YU X W, BI Z H, ZHAO F, et al. Polysulfide-shuttle control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte[J]. Advanced Energy Materials, 2016, 6: doi: 10.1002/aenm.201601392.
|
16 |
LI N, WENG Z, WANG Y R, et al. An aqueous dissolved polysulfide cathode for lithium-sulfur batteries[J]. Energy Environment & Science, 2014, 7: doi: 10.1039/C4EE01717J.
|
17 |
FU K, GONG Y H, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy Environment & Science, 2017, 10: 1568-1575.
|
18 |
YU X W, BI Z H, ZHAO F, et al. Hybrid lithium-sulfur batteries with a solid electrolyte membrane and lithium polysulfide catholyte[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16625-16631.
|
19 |
WANG Y L, SHEN Y B, DU Z L, et al. A lithium-carbon nanotube composite for stable lithium anodes[J]. Journal of Materials Chemistry A, 2017, 5: 23434-23439.
|
20 |
CHEN H W, SHEN Y B, WANG C H, et al. From nano size effect to in situ wrapping: rational design of cathode structure for high performance lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165: A6034-A6042.
|
21 |
YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry[J]. Materials and Prospects, 2013, 52: 13186-13200.
|
22 |
ZHANG J, NING L, HAO Y, et al. Topology optimization for crashworthiness and structural design of a battery electric vehicle[J]. International Journal of Crashworthiness, 2020(8): 1-10.
|
23 |
CHEN H W, SHEN Y B, WANG H H, et al. From nano size effect to in situ wrapping: Rational design of cathode structure for high performance lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165: A6034-A6042.
|
24 |
CHEN H W, DONG W L, GE J, et al. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/ sulfur batteries[J]. Scientific Reports, 2013, doi: 10.1038/srep01910.
|
25 |
HU C J, CHEN H W, SHEN Y B, et al. In situ wrapping of the cathode material in lithium-sulfur batteries[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00656-8.
|