储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 577-585.doi: 10.19799/j.cnki.2095-4239.2020.0393
收稿日期:
2020-12-04
修回日期:
2020-12-25
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
郑俊生
E-mail:jszheng@tongji.edu.cn
作者简介:
郑俊生(1979—),男,副教授,硕士生导师,工学博士,主要研究方向为氢能与燃料电池技术。E-mail:基金资助:
Junsheng ZHENG1,2(), Ningning DAI1,2, Kun ZHAO1, Jingnan YU1
Received:
2020-12-04
Revised:
2020-12-25
Online:
2021-03-05
Published:
2021-03-05
Contact:
Junsheng ZHENG
E-mail:jszheng@tongji.edu.cn
摘要:
燃料电池汽车商业化示范运营项目旨在研究燃料电池汽车的商业化应用前景,并在经济性、可靠性和寿命等方面对燃料电池车辆进行改进,是促进燃料电池汽车商业化发展的重要途径。燃料电池系统的使用寿命是制约燃料电池汽车商业化发展的主要因素,因此通过示范运营项目的研究工作,分析燃料电池系统在道路工况下的性能衰减过程,阐明燃料电池系统性能衰退机制,是提高燃料电池汽车使用寿命的重要基础。本文通过对相关文献的探讨,回顾了燃料电池汽车示范运营项目的研究进展,介绍了燃料电池系统性能衰退的分析方法,指出了示范运营项目的主要研究内容主要包括运行工况分析和对电堆的性能衰退分析。重点介绍了数据驱动和基于模型的分析方法,同时对用于燃料电池电压分析的极化曲线,进行了稳态极化特性拟合的公式推导,并指出稳态极化特性拟合的结果只适用于特定的运行环境,不具有广泛的适用性。最后,本文总结了燃料电池汽车示范运营项目研究工作的重点和分析方法的发展趋势,为基于示范运营的燃料电池研究工作提供参考。
中图分类号:
郑俊生, 戴宁宁, 赵坤, 余京男. 基于示范运营的燃料电池汽车性能衰退分析方法[J]. 储能科学与技术, 2021, 10(2): 577-585.
Junsheng ZHENG, Ningning DAI, Kun ZHAO, Jingnan YU. Performance degradation analysis methods for fuel cell vehicles based on demonstration operations[J]. Energy Storage Science and Technology, 2021, 10(2): 577-585.
1 | HENNE R H, FRIEDRICH K A. Applications-transportation | buses: Fuel cells[J]. Encyclopedia of Electrochemical Power Sources, 2009: 193-202. |
2 | ALASWAD A, BAROUTAJI A, ACHOUR H, et al. Developments in fuel cell technologies in the transport sector[J]. International Journal of Hydrogen Energy, 2016, 41(37): 16499-16508. |
3 | CHAN S H, STEMPIEN J P, DING O L, et al. Fuel cell and hydrogen technologies research, development and demonstration activities in Singapore-An update[J]. International Journal of Hydrogen Energy, 2016, 41(32): 13869-13878. |
4 | OSVALDO M, ESPÍNOLA G, DA SILVA E P, et al. Are HFC buses a feasible alternative for urban transportation in Paraguay?[J] International Journal of Hydrogen Energy, 2012, 37(21): 16177-16185. |
5 | AHMADI P, KJEANG E. Comparative life cycle assessment of hydrogen fuel cell passenger vehicles in different Canadian provinces[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12905-12917. |
6 | HARALDSSON K, FOLKESSON A, SAXE M, et al. A first report on the attitude towards hydrogen fuel cell buses in Stockholm[J]. International Journal of Hydrogen Energy, 2005, 31(3): 317-325. |
7 | HEO J Y, YOO S H. The public's value of hydrogen fuel cell buses: a contingent valuation study[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4232-4240. |
8 | SAXE M, FOLKESSON A, ALVFORS P. A follow-up and conclusive report on the attitude towards hydrogen fuel cell buses in the CUTE project—From passengers in Stockholm to bus operators in Europe[J]. International Journal of Hydrogen Energy, 2007, 32(17): 4295-4305. |
9 | LANGFORD B C, CHERRY C. Transitioning a bus transit fleet to hydrogen fuel: a case study of Knoxville Area transit[J]. International Journal of Hydrogen Energy, 2011, 37(3): 2635-2643. |
10 | LI Xiangjun, LI Jianqiu, XU Liangfei, et al. Performance analysis of proton-exchange membrane fuel cell stacks used in Beijing urban-route buses trial project[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3841-3847. |
11 | YANG C, OGDEN J M. Renewable and low carbon hydrogen for California-modeling the long-term evolution of fuel infrastructure using a quasi-spatial TIMES model[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4250-4265. |
12 | OGDEN J M. Developing an infrastructure for hydrogen vehicles: a Southern California case study[J]. International Journal of Hydrogen Energy, 1999, 24(8): 709-730. |
13 | ROWSHANZAMIR S J, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9349-9384. |
14 | LI X G. Principles of fuel cells[M]. Taylor & Francis, New York, 2006. |
15 | SALOMÉ S, FERRARIA A M, REGO B D, et al. Enhanced activity and durability of novel activated carbon-supported PdSn heat-treated cathode catalyst for polymer electrolyte fuel cells[J]. Electrochimica Acta, 2016, 192: 268-282. |
16 | HIRAMITSU Y, SATO H, HOSOMI H, et al. Influence of humidification on deterioration of gas diffusivity in catalyst layer on polymer electrolyte fuel cell[J]. Journal of Power Sources, 2009, 195(2): 435-444. |
17 | HUA Thanh, AHLUWALIA R, EUDY L, et al. Status of hydrogen fuel cell electric buses worldwide[J]. Journal of Power Sources, 2014, 269: 975-993. |
18 | 侯中军, 甘全, 马由奇, 等. 客车用燃料电池发动机耐久性研究[J]. 机械工程学报, 2010, 46(6): 39-43. |
HOU Zhongjun, GAN Quan, MA Youqi, et al. Study on durability of the fuel cell power system for the bus application[J]. Journal of Mechanical Engineering, 2010; 46(6): 39-43. | |
19 | JOUIN M, GOURIVEAU R, HISSEL D, et al. Prognostics of PEM fuel cell in a particle filtering framework[J]. International Journal of Hydrogen Energy, 2014, 39(1): 481-494. |
20 | JOUIN M, GOURIVEAU R, HISSEL D, et al. Prognostics and health management of PEMFC-State of the art and remaining challenges[J]. International Journal of Hydrogen Energy, 2013, 38(35): 15307-15317. |
21 | PETRONE R, HISSEL D, PÉRA M C, et al. Accelerated stress test procedures for PEM fuel cells under actual load constraints: State-of-art and proposals[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12489-12505. |
22 | MORANDO S, JEMEI S, GOURIVEAU R, et al. Fuel cells remaining useful lifetime forecasting using echo state network [C]//IEEE Vehicle Power and Propulsion Conference (VPPC), 2014: 1-6. |
23 | JOUIN M, GOURIVEAU R, HISSEL D, et al. Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation[J]. IEEE Transactions on Reliability, 2015, 205(2): 211-216. |
24 | SILVA R E, GOURIVEAU R, JEMEÏ S, et al. Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11128-11144. |
25 | JAHNKE T, FUTTER G, LATZ A, et al. Performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale[J]. Journal of Power Sources, 2016, 304: 207-233. |
26 | MAYUR M, STRAHL S, HUSAR A, et al. A multi-timescale modeling methodology for PEMFC performance and durability in a virtual fuel cell car[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16466-16476. |
27 | THEILER A, JEREB L K. Modelling of the mechanical durability of constrained Nafion membrane under humidity cycling[J]. International Journal of Hydrogen Energy, 2015, 40(31): 9773-9782. |
28 | WON Seongyeon, OH Kyeongmin, JU Hyunchul. Numerical degradation studies of high-temperature proton exchange membrane fuel cells with phosphoric acid-doped PBI membranes[J]. International Journal of Hydrogen Energy, 2016, 41(19): 8296-8306. |
29 | SUGAWARA S, MARUYAMA T, NAGAHARA Y, et al. Performance decay of proton-exchange membrane fuel cells under open circuit conditions induced by membrane decomposition[J]. Journal of Power Sources, 2008, 187(2): 324-331. |
30 | QUIROGA M A, MALEK K, FRANCO A A. A multiparadigm modeling investigation of membrane chemical degradation in PEM fuel cells[J]. Journal of the Electrochemical Society, 2016, 163(2): F59-F70. |
31 | REISER C A, BREGOLI L, PATTERSON T W, et al. A reverse-current decay mechanism for fuel cells[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A273. |
32 | DEBE M K, SCHMOECKEL A K, VERNSTROM G D, et al. High voltage stability of nanostructured thin film catalysts for PEM fuel cells[J]. Journal of Power Sources, 2006, 161(2): 1002-1011. |
33 | DARLING R M, MEYERS J P. Kinetic model of platinum dissolution in PEMFCs[J]. Journal of the Electrochemical Society, 2002, 150(11): A1523-1527. |
34 | DARLING R M, MEYERS J P. Mathematical model of platinum movement in PEM fuel cells[J]. Journal of the Electrochemical Society, 2004, 152(1): A242-247. |
35 | BI Wu, FULLER T F. Modeling of PEM fuel cell Pt/C catalyst degradation[J]. Journal of Power Sources, 2007, 178(1): 188-196. |
36 | LI Yubai, MORIYAMA K, GU Wenbin, et al. A one-dimensional Pt degradation model for polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2015, 162(8): F834-F842. |
37 | LU Languang, OUYANG Minggao, HUANG Haiyan, et al. A semi-empirical voltage degradation model for a low-pressure proton exchange membrane fuel cell stack under bus city driving cycles[J]. Journal of Power Sources, 2006, 164(1): 306-314. |
38 | JANG J H, CHIU H C, YAN W M, et al. Effects of operating conditions on the performances of individual cell and stack of PEM fuel cell[J]. Journal of Power Sources, 2008, 180(1): 476-483. |
39 | PARK Y H, CATON J A. Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method[J]. Journal of Power Sources, 2008, 179(2): 584-591. |
40 | LI Yankun, ZHAO Xingqiang, LIU Zhixiang, et al. Experimental study on the voltage uniformity for dynamic loading of a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(23): 7361-7369. |
41 | LI Xianguo, SABIR I, PARK Jaewan. A flow channel design procedure for PEM fuel cells with effective water removal[J]. Journal of Power Sources, 2006, 163(2): 933-942. |
42 | LI Jianqiu, HU Zunyan, XU Liangfei, et al. Fuel cell system degradation analysis of a Chinese plug-in hybrid fuel cell city bus[J]. International Journal of Hydrogen Energy, 2016, 41(34): 15295-15310. |
43 | 张新丰, 杨代军, 周拓. 车用燃料电池系统的性能衰退机理及影响因素分析[J]. 汽车安全与节能学报, 2012, 3(3): 276-286. |
ZHANG Xinfeng, YANG Daijun, ZHOU Tuo. Analysis of performance degradation mechanism and influencing factors of vehicle fuel cell system[J]. Journal of Automotive Safety and Energy, 2012, 3(3): 276-286. | |
44 | LARMINIE J, DICKS A. Fuel Cell Systems Explained [M]. 2nd ed. John Wiley & Sons Ltd, 2003. |
45 | 张新丰, 沈勇, 杨瑞, 等. 道路环境下质子交换膜燃料电池系统性能衰退统计研究[J]. 电工技术学报, 2013, 28(6): 16-20. |
ZHANG Xinfeng, SHEN Yong, YANG Rui, et al. Statistical study on performance degradation of proton exchange membrane fuel cell system in road environment[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 16-20. |
[1] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[2] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性实验[J]. 储能科学与技术, 2022, 11(5): 1314-1321. |
[3] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[4] | 谢林翰, 李万忠, 张倩倩, 曹高萍, 邱景义, 明海, 封伟. 植物发供电技术的研究进展[J]. 储能科学与技术, 2022, 11(2): 442-466. |
[5] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性的数值研究[J]. 储能科学与技术, 2022, 11(1): 291-296. |
[6] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
[7] | 李萍萍, 陈姗姗, 赵璐璐, 史明亮, 黄岩, 李初福. 整体煤气化固体氧化物燃料电池并网测试系统设计[J]. 储能科学与技术, 2021, 10(6): 2039-2045. |
[8] | 李志浩, 彭浩, 陈亚琴. 质子交换膜燃料电池膜电极组件温度分布的神经网络预测模型[J]. 储能科学与技术, 2021, 10(6): 2053-2059. |
[9] | 韩婷婷, 吴玉玺, 解子恒, 孟秀霞, 张津津, 解玉姣, 于方永, 杨乃涛. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942. |
[10] | 韦守李, 李希超, 常修亮, 陈兵, 许卓, 张涛, 郑莉莉, 戴作强. 固体氧化物燃料电池双极板材料发展综述[J]. 储能科学与技术, 2021, 10(6): 1943-1951. |
[11] | 刘偲艳, 胡毕华. 氢燃料汽车双向DC-DC变换器改进模型预测控制[J]. 储能科学与技术, 2021, 10(6): 2046-2052. |
[12] | 练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
[13] | 吴玉玺, 韩婷婷, 解子恒, 李琳, 宋艳雯, 梁加仓, 张津津, 于方永, 杨乃涛. 直接碳固体氧化物燃料电池研究进展:碳燃料和逆向Boudouard反应催化剂[J]. 储能科学与技术, 2021, 10(6): 1977-1986. |
[14] | 张博雅, 刘柏鸿, 黎远航, 刘欣, 陈乾风, 侯三英. 二元氧化物修饰催化剂的制备及其自增湿性能[J]. 储能科学与技术, 2021, 10(6): 2013-2019. |
[15] | 郑丽娜, 王文中, 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津, 杨乃涛. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 448
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||