储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 553-562.doi: 10.19799/j.cnki.2095-4239.2021.0407

• 储能系统与工程 • 上一篇    下一篇

风冷电池模组热性能及成组效率的多目标优化

徐晓斌1(), 徐业飞1, 张恒运1(), 朱顺良1,2, 王海峰3   

  1. 1.上海工程技术大学机械与汽车工程学院,上海 201620
    2.上海机动车检测认证技术研究中心 有限公司,上海 201805
    3.青海交通职业技术学院,青海 西宁 810003
  • 收稿日期:2021-08-06 修回日期:2021-08-26 出版日期:2022-02-05 发布日期:2022-02-08
  • 通讯作者: 张恒运 E-mail:1016149312@qq.com;zhanghengyun@sues.edu.cn
  • 作者简介:徐晓斌(1996—),男,硕士研究生,研究方向为动力电池热管理,E-mail:1016149312@qq.com
  • 基金资助:
    国家自然科学基金(51876113);上海自然科学基金(21ZR1426300)

Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module

Xiaobin XU1(), Yefei XU1, Hengyun ZHANG1(), Shunliang ZHU1,2, Haifeng WANG3   

  1. 1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2.Shanghai Motor Vehicles Inspection Certification Center, Shanghai 201805, China
    3.Qinghai Communications Technical College, Xining 810003, Qinghai, China
  • Received:2021-08-06 Revised:2021-08-26 Online:2022-02-05 Published:2022-02-08
  • Contact: Hengyun ZHANG E-mail:1016149312@qq.com;zhanghengyun@sues.edu.cn

摘要:

本工作提出一种基于套筒式热扩散板结构的新型风冷电池热管理系统,通过数值仿真研究电池模组的风冷性能。将电池模组内圆柱形锂离子电池正交排列,电池底部通过电绝缘板与铝制底板连接,且在电池中部配置双层热扩散板,从而增强风冷电池模组的热性能。首先,搭建了相应的风冷实验系统,通过对相同风速条件下的实验结果和仿真结果进行对比,对数值模型的可行性进行了验证。接着对电池模组的进口风速与热扩散板结构参数进行仿真研究,根据中心复合实验设计(CCD)原则得出25个研究案例,为建立优化目标代理模型提供样本数据。然后结合期望函数和代理模型对热扩散板配置下的电池模组进行了多目标优化,包括最高温度、最大温差、进出口压差的望小设计以及电池模组成组效率的望大设计,得到热扩散板结构参数和模组进口风速的最优结构配置。相比常规无扩散板配置设计,优化电池模组的最高温度和最大温差分别降低16.12%(6.36 ℃)和48.48%(2.72 ℃),并且重量成组效率为87.1%,与常规设计89.73%接近,在保证高成组效率的基础上显著提高了电池模组的温度一致性。

关键词: 热扩散板, 风冷电池模组, 多目标优化, 成组效率, 温度一致性

Abstract:

In this paper, a new type of air cooling battery thermal management system based on a heat spreader plate with a casing tube is proposed to extend the air cooling limit. The cylindrical lithium-ion batteries in the module are arranged in an orthogonal array. The bottom of the battery is connected to an aluminum base plate by a positioning insulation layer, whereas the heat spreader plate is allocated in the middle of the battery through a casing tube, thus enhancing the heat transfer from the battery to the air flow. First, the corresponding air cooling experimental system was constructed, and the feasibility of the numerical model was verified by comparing with the experimental results. Subsequently, the inlet velocity and structure parameters of the battery module were investigated by simulation; then, 25 cases were obtained on the basis of Central Composite Design to provide sample data for the buildup of surrogate models of optimization objectives. Desirability functions and surrogate models were introduced to conduct multiobjective optimization, including maximum temperature, maximum temperature difference, pressure drop, and grouping efficiency. Finally, an optimal configuration of the structural parameters of the heat spreader plate and the air velocity of the module were obtained. Compared to the design without a heat spreader plate, the maximum temperature and maximum temperature difference of the optimal design were decreased by 16.12% (6.36 ℃?) and 48.48% (2.72 ℃?), respectively, whereas the corresponding grouping efficiency was 87.1%, which is close to 89.73% of the conventional design. The temperature uniformity of the battery module was obviously improved while ensuring a high-level weight grouping efficiency for the air cooling battery modules.

Key words: heat spreader plate, air cooling battery module, multi-objective optimization, grouping efficiency, temperature uniformity

中图分类号: