1 |
ARAI J, YAMAKI T, YAMAUCHI S, et al. Development of a high power lithium secondary battery for hybrid electric vehicles[J]. Journal of Power Sources, 2005, 146(1): 788-792.
|
2 |
SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
|
3 |
WANG Jiajun, SUN Xueliang. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(1): 5163-5185.
|
4 |
LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
5 |
KIM U S, SHIN C B, KIM C S. Modeling for the scale-up of a lithium-ion polymer battery[J]. Journal of Power Sources, 2009, 189(1): 841-846.
|
6 |
KIM U S, YI J, SHIN C B, et al. Modelling the thermal behaviour of a lithium-ion battery during charge[J]. Journal of Power Sources, 2011, 196(11): 5115-5121.
|
7 |
GUO M, KIM G H, WHITE R E. A three-dimensional multi-physics model for a Li-ion battery[J]. Journal of Power Sources, 2013, 240: 80-94.
|
8 |
LI Jie, CHENG Yun, AI Lihua, et al. 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration[J]. Journal of Power Sources, 2015, 293: 993-1005.
|
9 |
WEI Zhongbao, LIM T M, SKYLLAS-KAZACOS M, et al. Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery[J]. Applied Energy, 2016, 172: 169-179.
|
10 |
史玉军. 车用锂离子电池热分析[D]. 昆明: 昆明理工大学, 2017.
|
|
SHI Yujun. Thermal analysis of lithium ion battery for vehicle[D]. Kunming: Kunming University of Science and Technology, 2017.
|
11 |
张立军, 李文博, 程洪正. 三维锂离子单电池电化学-热耦合模型[J]. 电源技术, 2016, 40(7): 1362-1366.
|
|
ZHANG Lijun, LI Wenbo, CHENG Hongzheng. Coupled thermal-electrochemical model of 3D lithium-ion battery[J]. Chinese Journal of Power Sources, 2016, 40(7): 1362-1366.
|
12 |
张志超, 郑莉莉, 杜光超, 等. 基于多尺度锂离子电池电化学及热行为仿真实验研究[J]. 储能科学与技术, 2020, 9(1): 124-130.
|
|
ZHANG Zhichao, DENG Lili, DU Guangchao, et al. Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 124-130.
|
13 |
张剑波, 吴彬, 李哲. 车用动力锂离子电池热模拟与热设计的研发状况与展望[J]. 集成技术, 2014(1): 18-26.
|
|
ZHANG Jianbo, WU Bin, LI Zhe. Thermal modeling and thermal design of lithium-ion batteries for automotive application: status and prospects[J]. Journal of Integration Technology, 2014(1): 18-26.
|
14 |
LI Huanhuan, LIU Chengyang, SAINI A, et al. Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery[J]. Journal of Power Sources, 2019, 438: 226974.
|
15 |
鲁淑霞, 张罗幻, 蔡莲香, 等. 带有方差减小的加权零阶随机梯度下降算法[J]. 河北大学学报(自然科学版), 2019, 39(5): 536-546.
|
|
LU Shuxia, ZHANG Luohuan, CAI Lianxiang, et al. Weighted zeroth-order stochastic gradient descent algorithm with variance reduction[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(5): 536-546.
|
16 |
崔伟. 某重型汽车车架多目标拓扑优化设计及其有限元分析[D]. 长沙: 湖南大学, 2012.
|
|
CUI Wei. Multi-objective topology optimization and finite element analysis to a heavy automobile frame [D]. Changsha: Hunan University, 2012.
|
17 |
ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources, 2006, 158(1): 535-542.
|