Sodium-ion batteries are one of the next-generation low-cost and high-performance battery technologies in large-scale energy storage, and pre-sodiation technology can efficiently replace irreversible sodium depletion during cycling, therefore it plays a crucial role in the practical application of sodium-ion batteries. This research reviews the current pre-sodiation approaches, including physical pre-sodiation, electrochemical pre-sodiation, chemical reaction pre-sodiation, cathode additives, and over-sodiated cathodes. The benefits and drawbacks of different pre-sodiation technologies are examined, and the issues existing in the present pre-sodiation technologies are indicated considering the safety, operability, high efficiency, and total cost. Finally, we offer an outlook on the commercial prospects and development directions of pre-sodiation technologies in the future sodium-ion batteries. With its safety being its primary issue, physical pre-sodiation is facile and convenient; electrochemical pre-sodiation can obtain stable SEI film, but it is restricted by tedious process steps; although atmosphere has specific requirements, and the solvent is expensive, chemical reaction pre-sodiation can also generate a uniform and dense SEI film; although the cathode additives are easy to operate, there are few studies on the residue and gas production; and although the over-sodiated cathode has excellent electrochemical stability, it is restricted by too few types. Future pre-sodiation research needs to comprehensively consider factors including cost, environmental protection, safety and stability, and the effect mechanism of side reactions and by-products need to be investigated in depth.
Fig. 4
(a) Schematic illustration of the solution pre-sodiation process; (b) Pre-sodiation mechanism for hard carbon anodes using Naph-Na-THF solution[55]
Martinez De Ilarduya等[59]将NaN3作为正极添加剂作用于Na0.67[Fe0.5Mn0.5]O2//HC钠离子全电池中。正极添加剂的反应方程式为:2NaN3→3N2↑+2Na++2e-。在添加10% NaN3的情况下,可逆容量增加了60%,而不会影响电池的循环寿命,且NaN3可在空气中处理。值得注意是过量的NaN3添加剂对循环稳定性产生一定负面影响。
DOSE W M, JOHNSON C S. Cathode pre-lithiation/sodiation for next-generation batteries[J]. Current Opinion in Electrochemistry, 2022, 31: doi: 10.1016/j.coelec. 2021. 100827.
WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. ChemInform, 2004, 35(50): doi: 10.1002/chin. 200450265.
GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond—a 2030 vision[J]. Nature Communications, 2020, 11: 6279.
WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
BURKE A F. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 806-820.
KUBOTA K, KOMABA S. Review—practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2.0151514jesA2538-A2550.
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
KIM H, KIM H, DING Z, et al. Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(19): doi: 10.1002/aenm.201600943.
LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669.
BELTROP K, BEUKER S, HECKMANN A, et al. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries[J]. Energy & Environmental Science, 2017, 10(10): 2090-2094.
MARTIN G, RENTSCH L, HÖCK M, et al. Lithium market research-global supply, future demand and price development[J]. Energy Storage Materials, 2017, 6: 171-179.
HASA I, MARIYAPPAN S, SAUREL D, et al. Challenges of today for Na-based batteries of the future: From materials to cell metrics[J]. Journal of Power Sources, 2021, 482: doi: 10.1016/j.jpowsour.2020. 228872.
WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912.
NI Q, BAI Y, WU F, et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600275.
WAN M, ZENG R, MENG J T, et al. Post-synthetic and insitu vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries[J]. Nano-Micro Letters, 2021, 14(1): 9.
YANG L X, LIU Q, WAN M, et al. Surface passivation of NaxFe[Fe(CN)6]cathode to improve its electrochemical kinetics and stability in sodium-ion batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019. 227421.
HONG K L, QIE L, ZENG R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): doi: 10.1039/c4ta02068e.
DUAN J, ZHANG W, WU C, et al. Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries[J]. Nano Energy, 2015, 16: 479-487.
CHEN K Y, ZHANG W X, XUE L H, et al. Mechanism of capacity fade in sodium storage and the strategies of improvement for FeS 2 anode[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1536-1541.
LIU Y H, LIU Q Z, JIAN C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus[J]. Nature Communications, 2020, 11: 2520.
PARK Y, SHIN D S, WOO S H, et al. Sodium terephthalate as an organic anode material for sodium ion batteries[J]. Advanced Materials, 2012, 24(26): 3562-3567.
PLACKE T, HECKMANN A, SCHMUCH R, et al. Perspective on performance, cost, and technical challenges for practical dual-ion batteries[J]. Joule, 2018, 2(12): 2528-2550.
MA R F, FAN L, CHEN S H, et al. Offset initial sodium loss to improve coulombic efficiency and stability of sodium dual-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15751-15759.
CEKIC-LASKOVIC I, VON ASPERN N, IMHOLT L, et al. Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries[J]. Topics in Current Chemistry, 2017, 375(2): 37.
KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867.
MUÑOZ-MÁRQUEZ M Á, SAUREL D, GÓMEZ-CÁMER J L, et al. Na-ion batteries for large scale applications: A review on anode materials and solid electrolyte interphase formation[J]. Advanced Energy Materials, 2017, 7(20): doi: 10.1002/aenm. 201700463.
MOGENSEN R, BRANDELL D, YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries[J]. ACS Energy Letters, 2016, 1(6): 1173-1178.
BOMMIER C, JI X L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes[J]. Small, 2018, 14(16): doi: 10.1002/smll.201703576.
TAKENAKA N, SAKAI H, SUZUKI Y, et al. A computational chemical insight into microscopic additive effect on solid electrolyte interphase film formation in sodium-ion batteries: Suppression of unstable film growth by intact fluoroethylene carbonate[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18046-18055.
DOSE W M, VILLA C, HU X B, et al. Beneficial effect of Li5FeO4 lithium source for Li-ion batteries with a layered NMC cathode and Si anode[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abd1ef.
WINTER M. The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift Für Physikalische Chemie, 2009, 223(10/11): 1395-1406.
HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251.
IRISARRI E, PONROUCH A, PALACIN M R. Review—Hard carbon negative electrode materials for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2. 0091514jes.
XIE B X, ZUO P J, WANG L G, et al. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture[J]. Nano Energy, 2019, 61: 201-210.
ZHANG N, LIU Q, CHEN W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources, 2018, 378: 331-337.
MORTEMARD DE BOISSE B, CARLIER D, GUIGNARD M, et al. P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de)intercalation process[J]. Inorganic Chemistry, 2014, 53(20): 11197-11205.
DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): doi: 10.1002/aenm.201701428.
SINGH G, ACEBEDO B, CABANAS M C, et al. An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2[J]. Electrochemistry Communications, 2013, 37: 61-63.
DOSE W M, KIM S, LIU Q, et al. Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(21): 12818-12829.
DEWAR D, GLUSHENKOV A M. Optimisation of sodium-based energy storage cells using pre-sodiation: A perspective on the emerging field[J]. Energy & Environmental Science, 2021, 14(3): 1380-1401.
ZHANG T Q, WANG R, HE B B, et al. Recent advances on pre-sodiation in sodium-ion capacitors: A mini review[J]. Electrochemistry Communications, 2021, 129: doi: 10.1016/j.elecom.2021. 107090.
KURATANI K, YAO M, SENOH H, et al. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon[J]. Electrochimica Acta, 2012, 76: 320-325.
WANG X H, QI L, WANG H Y. Commercial carbon molecular sieves as a na+-storage anode material in dual-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14): doi: 10.1149/2. 0491714jes.
ZOU K Y, DENG W T, CAI P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: Concepts, applications, and perspectives[J]. Advanced Functional Materials, 2021, 31(5): doi: 10.1002/adfm.202005581.
MARINARO M, WEINBERGER M, WOHLFAHRT-MEHRENS M. Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries[J]. Electrochimica Acta, 2016, 206: 99-107.
TANG J L, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482.
AIDA T, YAMADA K, MORITA M. An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode[J]. Electrochemical and Solid-State Letters, 2006, 9(12): doi: 10.1149/1. 2349495.
BUBLIL S, LEIFER N, NANDA R, et al. Alumina thin coat on pre-charged soft carbon anode reduces electrolyte breakdown and maintains sodiation sites active in Na-ion battery-Insights from NMR measurements[J]. Journal of Solid State Chemistry, 2021, 298: doi: 10.1016/j.jssc.2021. 122121.
YANG D F, SUN X M, LIM K, et al. Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors[J]. Journal of Power Sources, 2017, 362: 358-365.
CAO Y, ZHANG T Q, ZHONG X G, et al. A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials[J]. Chemical Communications, 2019, 55(98): 14761-14764.
LIU X X, TAN Y C, LIU T C, et al. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(50): doi: 10.1002/adfm.201903795.
DE LA LLAVE E, BORGEL V, PARK K J, et al. Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1867-1875.
PAN X X, CHOJNACKA A, JEŻOWSKI P, et al. Na2S sacrificial cathodic material for high performance sodium-ion capacitors[J]. Electrochimica Acta, 2019, 318: 471-478.
XU Y K, SUN H Z, MA C S, et al. Pre-sodiation strategy for superior sodium storage batteries[J]. Chinese Journal of Chemical Engineering, 2021, 39: 261-268.
MARTINEZ DE ILARDUYA J, OTAEGUI L, LÓPEZ DEL AMO J M, et al. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery[J]. Journal of Power Sources, 2017, 337: 197-203.
ZHANG Q, GAO X W, SHI Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan[J]. Energy Storage Materials, 2021, 39: 54-59.
PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688.
SHEN B L, ZHAN R M, DAI C L, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells[J]. Journal of Colloid and Interface Science, 2019, 553: 524-529.
ZHANG R, TANG Z, SUN D, et al. Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries[J]. Chemical Communications, 2021, 57(35): 4243-4246.
MARELLI E, MARINO C, BOLLI C, et al. How to overcome Na deficiency in full cell using P2-phase sodium cathode-A proof of concept study of Na-rhodizonate used as sodium reservoir[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019. 227617.
SATHIYA M, THOMAS J, BATUK D, et al. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes[J]. Chemistry of Materials, 2017, 29(14): 5948-5956.
ZOU K Y, SONG Z R, LIU H Q, et al. Electronic effect and regiochemistry of substitution in pre-sodiation chemistry[J]. The Journal of Physical Chemistry Letters, 2021, 12(49): 11968-11979.
MIRZA S, SONG Z H, ZHANG H Z, et al. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na4V2(PO4)3 as the cathode material[J]. Journal of Materials Chemistry A, 2020, 8(44): 23368-23375.
ZHOU H T, WANG X H, DE CHEN. Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries[J]. ChemSusChem, 2015, 8(16): 2737-2744.
... [55](a) Schematic illustration of the solution pre-sodiation process; (b) Pre-sodiation mechanism for hard carbon anodes using Naph-Na-THF solution[55]Fig. 42 正极预钠化2.1 正极添加剂