储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3487-3496.doi: 10.19799/j.cnki.2095-4239.2022.0332
收稿日期:
2022-06-17
修回日期:
2022-07-07
出版日期:
2022-11-05
发布日期:
2022-11-09
通讯作者:
张五星
E-mail:836326106@qq.com;zhangwx@hust.edu.cn
作者简介:
陈杰(2000—),男,硕士研究生,研究方向为钠离子电池,E-mail:836326106@qq.com;
基金资助:
Jie CHEN(), Weilun CHEN, Xu ZHANG, Yanwei ZHOU, Wuxing ZHANG()
Received:
2022-06-17
Revised:
2022-07-07
Online:
2022-11-05
Published:
2022-11-09
Contact:
Wuxing ZHANG
E-mail:836326106@qq.com;zhangwx@hust.edu.cn
摘要:
钠离子电池是下一代低成本和高性能规模储能电池技术之一,预钠化技术可有效补充其在循环过程中的不可逆钠损耗,因此在钠离子电池的实际应用中具有重要地位。本工作综述了目前已有的预钠化方法,包括物理预钠化、电化学预钠化、化学反应预钠化、正极添加剂以及富钠正极。考虑各种预钠化技术安全性、可操作性、高效性和整体成本等诸多因素,分析了各种预钠化技术的优势与不足,指出了目前预钠化技术存在的问题,最后展望了预钠化技术在未来钠离子电池中的商业前景和发展方向。物理预钠化操作简单方便,但安全性是其主要问题;电化学预钠化能获得稳定的SEI膜,但受限于繁琐的工艺步骤;化学反应预钠化也能形成均匀致密的SEI膜,但对气氛有一定的要求,且溶剂昂贵;正极添加剂操作简单方便,但对其产生的残留物和气体的研究甚少;富钠正极稳定性好,但受限于种类太少。未来的预钠化研究需要综合考虑成本、环保、安全和稳定性等因素,并对副反应和副产物的影响机理进行深入地研究。
中图分类号:
陈杰, 陈伟伦, 张旭, 周晏玮, 张五星. 钠离子电池预钠化技术研究进展[J]. 储能科学与技术, 2022, 11(11): 3487-3496.
Jie CHEN, Weilun CHEN, Xu ZHANG, Yanwei ZHOU, Wuxing ZHANG. Research progress of pre-sodiation technologies in sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3487-3496.
1 | DOSE W M, JOHNSON C S. Cathode pre-lithiation/sodiation for next-generation batteries[J]. Current Opinion in Electrochemistry, 2022, 31: doi: 10.1016/j.coelec. 2021. 100827. |
2 | WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. ChemInform, 2004, 35(50): doi: 10.1002/chin. 200450265. |
3 | GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond—a 2030 vision[J]. Nature Communications, 2020, 11: 6279. |
4 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
5 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
6 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
7 | BURKE A F. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 806-820. |
8 | KUBOTA K, KOMABA S. Review—practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2.0151514jesA2538-A2550. |
9 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
10 | KIM H, KIM H, DING Z, et al. Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(19): doi: 10.1002/aenm.201600943. |
11 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
12 | TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669. |
13 | BELTROP K, BEUKER S, HECKMANN A, et al. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries[J]. Energy & Environmental Science, 2017, 10(10): 2090-2094. |
14 | MARTIN G, RENTSCH L, HÖCK M, et al. Lithium market research-global supply, future demand and price development[J]. Energy Storage Materials, 2017, 6: 171-179. |
15 | HASA I, MARIYAPPAN S, SAUREL D, et al. Challenges of today for Na-based batteries of the future: From materials to cell metrics[J]. Journal of Power Sources, 2021, 482: doi: 10.1016/j.jpowsour.2020. 228872. |
16 | WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912. |
17 | NI Q, BAI Y, WU F, et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600275. |
18 | WAN M, ZENG R, MENG J T, et al. Post-synthetic and in situ vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries[J]. Nano-Micro Letters, 2021, 14(1): 9. |
19 | YANG L X, LIU Q, WAN M, et al. Surface passivation of NaxFe[Fe(CN)6]cathode to improve its electrochemical kinetics and stability in sodium-ion batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019. 227421. |
20 | HONG K L, QIE L, ZENG R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): doi: 10.1039/c4ta02068e. |
21 | DUAN J, ZHANG W, WU C, et al. Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries[J]. Nano Energy, 2015, 16: 479-487. |
22 | CHEN K Y, ZHANG W X, XUE L H, et al. Mechanism of capacity fade in sodium storage and the strategies of improvement for FeS 2 anode[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1536-1541. |
23 | LIU Y H, LIU Q Z, JIAN C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus[J]. Nature Communications, 2020, 11: 2520. |
24 | PARK Y, SHIN D S, WOO S H, et al. Sodium terephthalate as an organic anode material for sodium ion batteries[J]. Advanced Materials, 2012, 24(26): 3562-3567. |
25 | PLACKE T, HECKMANN A, SCHMUCH R, et al. Perspective on performance, cost, and technical challenges for practical dual-ion batteries[J]. Joule, 2018, 2(12): 2528-2550. |
26 | MA R F, FAN L, CHEN S H, et al. Offset initial sodium loss to improve coulombic efficiency and stability of sodium dual-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15751-15759. |
27 | CEKIC-LASKOVIC I, VON ASPERN N, IMHOLT L, et al. Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries[J]. Topics in Current Chemistry, 2017, 375(2): 37. |
28 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
29 | MUÑOZ-MÁRQUEZ M Á, SAUREL D, GÓMEZ-CÁMER J L, et al. Na-ion batteries for large scale applications: A review on anode materials and solid electrolyte interphase formation[J]. Advanced Energy Materials, 2017, 7(20): doi: 10.1002/aenm. 201700463. |
30 | MOGENSEN R, BRANDELL D, YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries[J]. ACS Energy Letters, 2016, 1(6): 1173-1178. |
31 | BOMMIER C, JI X L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes[J]. Small, 2018, 14(16): doi: 10.1002/smll.201703576. |
32 | TAKENAKA N, SAKAI H, SUZUKI Y, et al. A computational chemical insight into microscopic additive effect on solid electrolyte interphase film formation in sodium-ion batteries: Suppression of unstable film growth by intact fluoroethylene carbonate[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18046-18055. |
33 | DOSE W M, VILLA C, HU X B, et al. Beneficial effect of Li5FeO4 lithium source for Li-ion batteries with a layered NMC cathode and Si anode[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abd1ef. |
34 | WINTER M. The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift Für Physikalische Chemie, 2009, 223(10/11): 1395-1406. |
35 | HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251. |
36 | IRISARRI E, PONROUCH A, PALACIN M R. Review—Hard carbon negative electrode materials for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2. 0091514jes. |
37 | XIE B X, ZUO P J, WANG L G, et al. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture[J]. Nano Energy, 2019, 61: 201-210. |
38 | ZHANG N, LIU Q, CHEN W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources, 2018, 378: 331-337. |
39 | MORTEMARD DE BOISSE B, CARLIER D, GUIGNARD M, et al. P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de)intercalation process[J]. Inorganic Chemistry, 2014, 53(20): 11197-11205. |
40 | DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): doi: 10.1002/aenm.201701428. |
41 | SINGH G, ACEBEDO B, CABANAS M C, et al. An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2[J]. Electrochemistry Communications, 2013, 37: 61-63. |
42 | DOSE W M, KIM S, LIU Q, et al. Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(21): 12818-12829. |
43 | HOLTSTIEGE F, BÄRMANN P, NÖLLE R, et al. Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges[J]. Batteries, 2018, 4(1): 4. |
44 | DEWAR D, GLUSHENKOV A M. Optimisation of sodium-based energy storage cells using pre-sodiation: A perspective on the emerging field[J]. Energy & Environmental Science, 2021, 14(3): 1380-1401. |
45 | ZHANG T Q, WANG R, HE B B, et al. Recent advances on pre-sodiation in sodium-ion capacitors: A mini review[J]. Electrochemistry Communications, 2021, 129: doi: 10.1016/j.elecom.2021. 107090. |
46 | KURATANI K, YAO M, SENOH H, et al. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon[J]. Electrochimica Acta, 2012, 76: 320-325. |
47 | WANG X H, QI L, WANG H Y. Commercial carbon molecular sieves as a na+-storage anode material in dual-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14): doi: 10.1149/2. 0491714jes. |
48 | ZOU K Y, DENG W T, CAI P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: Concepts, applications, and perspectives[J]. Advanced Functional Materials, 2021, 31(5): doi: 10.1002/adfm.202005581. |
49 | MARINARO M, WEINBERGER M, WOHLFAHRT-MEHRENS M. Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries[J]. Electrochimica Acta, 2016, 206: 99-107. |
50 | TANG J L, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. |
51 | AIDA T, YAMADA K, MORITA M. An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode[J]. Electrochemical and Solid-State Letters, 2006, 9(12): doi: 10.1149/1. 2349495. |
52 | BUBLIL S, LEIFER N, NANDA R, et al. Alumina thin coat on pre-charged soft carbon anode reduces electrolyte breakdown and maintains sodiation sites active in Na-ion battery-Insights from NMR measurements[J]. Journal of Solid State Chemistry, 2021, 298: doi: 10.1016/j.jssc.2021. 122121. |
53 | YANG D F, SUN X M, LIM K, et al. Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors[J]. Journal of Power Sources, 2017, 362: 358-365. |
54 | CAO Y, ZHANG T Q, ZHONG X G, et al. A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials[J]. Chemical Communications, 2019, 55(98): 14761-14764. |
55 | LIU X X, TAN Y C, LIU T C, et al. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(50): doi: 10.1002/adfm.201903795. |
56 | DE LA LLAVE E, BORGEL V, PARK K J, et al. Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1867-1875. |
57 | PAN X X, CHOJNACKA A, JEŻOWSKI P, et al. Na2S sacrificial cathodic material for high performance sodium-ion capacitors[J]. Electrochimica Acta, 2019, 318: 471-478. |
58 | XU Y K, SUN H Z, MA C S, et al. Pre-sodiation strategy for superior sodium storage batteries[J]. Chinese Journal of Chemical Engineering, 2021, 39: 261-268. |
59 | MARTINEZ DE ILARDUYA J, OTAEGUI L, LÓPEZ DEL AMO J M, et al. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery[J]. Journal of Power Sources, 2017, 337: 197-203. |
60 | ZHANG Q, GAO X W, SHI Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan[J]. Energy Storage Materials, 2021, 39: 54-59. |
61 | PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688. |
62 | SHEN B L, ZHAN R M, DAI C L, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells[J]. Journal of Colloid and Interface Science, 2019, 553: 524-529. |
63 | ZHANG R, TANG Z, SUN D, et al. Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries[J]. Chemical Communications, 2021, 57(35): 4243-4246. |
64 | MARELLI E, MARINO C, BOLLI C, et al. How to overcome Na deficiency in full cell using P2-phase sodium cathode-A proof of concept study of Na-rhodizonate used as sodium reservoir[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019. 227617. |
65 | SATHIYA M, THOMAS J, BATUK D, et al. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes[J]. Chemistry of Materials, 2017, 29(14): 5948-5956. |
66 | ZOU K Y, SONG Z R, LIU H Q, et al. Electronic effect and regiochemistry of substitution in pre-sodiation chemistry[J]. The Journal of Physical Chemistry Letters, 2021, 12(49): 11968-11979. |
67 | MIRZA S, SONG Z H, ZHANG H Z, et al. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na4V2(PO4)3 as the cathode material[J]. Journal of Materials Chemistry A, 2020, 8(44): 23368-23375. |
68 | ZHOU H T, WANG X H, DE CHEN. Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries[J]. ChemSusChem, 2015, 8(16): 2737-2744. |
[1] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[2] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
[3] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988. |
[4] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[5] | 沈馨, 张睿, 赵辰孜, 武鹏, 张羽彤, 张俊东, 范丽珍, 刘全兵, 陈爱兵, 张强. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
[6] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[7] | 张斌伟, 魏子栋, 孙世刚. 室温钠硫电池硫化钠正极的发展现状与应用挑战[J]. 储能科学与技术, 2022, 11(9): 2811-2824. |
[8] | 陈淼淼, 邵钦君, 陈剑. 锂电池高比能量正极材料Cr8O21 的制备及应用[J]. 储能科学与技术, 2022, 11(9): 3011-3020. |
[9] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[10] | 陈紫莹, 丁翔, 童庆松, 李俊延, 黄景瑜. 掺杂技术在锰基层状富锂氧化物正极材料中应用进展[J]. 储能科学与技术, 2022, 11(8): 2681-2690. |
[11] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[12] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[13] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[14] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[15] | 王宇作, 邓苗, 王瑨, 杨斌, 卢颖莉, 荆葛, 阮殿波. 碳化温度对软碳负极储锂动力学的影响[J]. 储能科学与技术, 2022, 11(6): 1715-1724. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||