1 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
2 |
CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1): 16-22.
|
3 |
李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478.
|
|
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478.
|
4 |
BESENHARD J O, SCHÖLLHORN R. Chromium oxides as cathodes for secondary high energy density lithium batteries[J]. Journal of the Electrochemical Society, 1977, 124(7): 968-971.
|
5 |
NORBY P, CHRISTENSEN A N, FJELLVÅG H, et al. The crystal structure of Cr8O21 determined from powder diffraction data: Thermal transformation and magnetic properties of a chromium-chromate-tetrachromate[J]. Journal of Solid State Chemistry, 1991, 94(2): 281-293.
|
6 |
KUBOTA B. Decomposition of higher oxides of chromium under various pressures of oxygen[J]. Journal of the American Ceramic Society, 1961, 44(5): 239-248.
|
7 |
WILHELMI K A, EHRENBERG L, OLSON T, et al. Formation of chromium oxides in the Cr2O3-CrO3 region at elevated pressures up to 4 kilobar[J]. Acta Chemica Scandinavica, 1968, 22: 2565-2573.
|
8 |
TAKEDA Y, KANNO R, TSUJI Y, et al. Chromium oxides as cathodes for lithium cells[J]. Journal of Power Sources, 1983, 9(3): 325-328.
|
9 |
ARORA P. Chromium oxides and lithiated chromium oxides. promising cathode materials for secondary lithium batteries[J]. Electrochemical and Solid-State Letters, 1999, 1(6): 249.
|
10 |
RAMASAMY R P, RAMADASS P, HARAN B S, et al. Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries[J]. Journal of Power Sources, 2003, 124(1): 155-162.
|
11 |
LIU J Y, WANG Z X, LI H, et al. Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2675-2678.
|
12 |
FENG G X, LI L F, LIU J Y, et al. Enhanced electrochemical lithium storage activity of LiCrO2 by size effect[J]. Journal of Materials Chemistry, 2009, 19(19): 2993.
|
13 |
TAKEDA Y, KANNO R, TSUJI Y, et al. Rechargeable lithium/chromium oxide cells[J]. Journal of the Electrochemical Society, 1984, 131(9): 2006-2010.
|
14 |
BESENHARD J O, SCHWAKE M, MISAILIDIS N. Modified chromium oxides for high-rate lithium intercalation cathodes[J]. Journal of Power Sources, 1989, 26(3/4): 409-414.
|
15 |
KOMABA S, TAKEI C, NAKAYAMA T, et al. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2[J]. Electrochemistry Communications, 2010, 12(3): 355-358.
|
16 |
ZHAO D, QIN J W, ZHENG L R, et al. Amorphous vanadium oxide/molybdenum oxide hybrid with three-dimensional ordered hierarchically porous structure as a high-performance Li-ion battery anode[J]. Chemistry of Materials, 2016, 28(12): 4180-4190.
|
17 |
ZHANG D, POPOV B N, PODRAZHANSKY Y M, et al. Cobalt doped chromium oxides as cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 1999, 83(1/2): 121-127.
|