储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2811-2824.doi: 10.19799/j.cnki.2095-4239.2022.0371
收稿日期:
2022-07-01
修回日期:
2022-07-15
出版日期:
2022-09-05
发布日期:
2022-08-30
通讯作者:
魏子栋,孙世刚
E-mail:binwei@cqu.edu.cn;zdwei@cqu.edu.cn;sgsun@xmu.edu.cn
作者简介:
张斌伟(1988—),男,副教授,主要研究方向为电化学能源领域的催化机制,E-mail:binwei@cqu.edu.cn;
基金资助:
Binwei ZHANG1,2(), Zidong WEI1,2(), Shigang SUN2,3()
Received:
2022-07-01
Revised:
2022-07-15
Online:
2022-09-05
Published:
2022-08-30
Contact:
Zidong WEI, Shigang SUN
E-mail:binwei@cqu.edu.cn;zdwei@cqu.edu.cn;sgsun@xmu.edu.cn
摘要:
室温钠硫电池以其高能量密度、资源丰富、价格低廉等优势有望在大规模储能、动力电池等领域实现广泛应用而备受青睐。其中,室温钠硫电池的放电最终产物硫化钠,可以作为正极材料,不仅理论比容量高(686 mAh/g),且可以与非钠金属负极(如硬碳、锡金属)匹配从而避免直接使用钠金属负极带来的安全隐患等优点逐渐成为研究热点。然而由于硫化钠正极材料的本征电导率低、反应活性差、与多硫化物的可逆循环差等缺点限制了其实际比容量和循环寿命。本文通过对硫化钠正极材料的工作机理深入探讨,从材料理性设计和电池结构构造的角度入手,着重讨论硫化钠正极材料本征电导性和与多硫化物的可逆循环性的提升策略,并重点介绍了硫化钠正极材料的近期研究进展。最后,面向硫化物正极材料的实际化应用需求,凝练出推动其进一步发展的重要研究方向。
中图分类号:
张斌伟, 魏子栋, 孙世刚. 室温钠硫电池硫化钠正极的发展现状与应用挑战[J]. 储能科学与技术, 2022, 11(9): 2811-2824.
Binwei ZHANG, Zidong WEI, Shigang SUN. The recent progress and future opportunities of Na2S cathode for room temperature sodium sulfur batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2811-2824.
1 | TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669. |
2 | YE Y S, CHOU L Y, LIU Y Y, et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries[J]. Nature Energy, 2020, 5(10): 786-793. |
3 | ZHANG L, LIU X X, DOU Y H, et al. Mass production and pore size control of holey carbon microcages[J]. Angewandte Chemie International Edition, 2017, 56(44): 13790-13794. |
4 | ZHAO L F, HU Z, LAI W H, et al. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Advanced Energy Materials, 2021, 11(1): 2002704. |
5 | REN L, ZHANG B W. Room temperature liquid metals for flexible alkali metal-chalcogen batteries[J]. Exploration, 2022: 20210182. |
6 | WEI D, SHEN W, XU T, et al. Ultra-flexible and foldable gel polymer lithium-ion batteries enabling scalable production[J]. Materials Today Energy, 2022, 23: 100889. |
7 | 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. | |
8 | 戚兴国, 王伟刚, 胡勇胜, 等. 钠离子电池层状氧化物正极材料的表面修饰研究[J]. 储能科学与技术, 2020, 9(5): 1396-1401. |
QI X G, WANG W G, HU Y S, et al. Surface modification research of layered oxide materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401. | |
9 | LI H P, GUO C, ZHANG T S, et al. Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery[J]. Nano Letters, 2022, 22(10): 4223-4231. |
10 | LIANG Y, DONG H, AURBACH D, et al. Current status and future directions of multivalent metal-ion batteries[J]. Nature Energy, 2020, 5: 646-656. |
11 | ZHANG L, DOU Y H, GUO H P, et al. A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(24): 12073-12079. |
12 | ZHANG B W, SHENG T, WANG Y X, et al. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur interactions[J]. Angewandte Chemie International Edition, 2019, 58(5): 1484-1488. |
13 | WU C, LEI Y J, SIMONELLI L, et al. Continuous carbon channels enable full Na-ion accessibility for superior room-temperature Na-S batteries[J]. Advanced Materials, 2022, 34(8): 2108363. |
14 | 胡英瑛, 吴相伟, 温兆银. 储能钠硫电池的工程化研究进展与展望——提高电池安全性的材料与结构设计[J]. 储能科学与技术, 2021, 10(3): 781-799. |
HU Y Y, WU X W, WEN Z Y. Progress and prospect of engineering research on energy storage sodium sulfur battery—Material and structure design for improving battery safety[J]. Energy Storage Science and Technology, 2021, 10(3): 781-799. | |
15 | ZHANG J, LI J Y, WANG W P, et al. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries[J]. Advanced Energy Materials, 2018, 8(14): 1702839. |
16 | DONG Q, SHEN R P, LI C P, et al. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries[J]. Small, 2018, 14(52): 1804277. |
17 | WEN Z Y, HU Y Y, WU X W, et al. Main challenges for high performance NAS battery: Materials and interfaces[J]. Advanced Functional Materials, 2013, 23(8): 1005-1018. |
18 | Ford gives Na-S battery details[N/J]. Chemical & Engineering News Archive, 1966, 44(42): 32-33. |
19 | WEN Z Y, CAO J D, GU Z H, et al. Research on sodium sulfur battery for energy storage[J]. Solid State Ionics, 2008, 179(27/28/29/30/31/32): 1697-1701. |
20 | WEN Z Y, GU Z H, XU X H, et al. Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries[J]. Journal of Power Sources, 2008, 184(2): 641-645. |
21 | ZHANG B W, LIU Y D, WANG Y X, et al. In situ grown S nanosheets on Cu foam: An ultrahigh electroactive cathode for room-temperature Na-S batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24446-24450. |
22 | YANG H L, ZHOU S, ZHANG B W, et al. Architecting freestanding sulfur cathodes for superior room-temperature Na-S batteries[J]. Advanced Functional Materials, 2021, 31(32): 2102280. |
23 | ZHOU X F, YU Z X, YAO Y, et al. A high-efficiency Mo2C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries[J]. Advanced Materials, 2022, 34(14): 2200479. |
24 | XIN S, YIN Y X, GUO Y G, et al. A high-energy room-temperature sodium-sulfur battery[J]. Advanced Materials, 2014, 26(8): 1261-1265. |
25 | WANG L F, WANG H Y, ZHANG S P, et al. Manipulating the electronic structure of nickel via alloying with iron: Toward high-kinetics sulfur cathode for Na-S batteries[J]. ACS Nano, 2021, 15(9): 15218-15228. |
26 | PENG L L, WEI Z Y, WAN C Z, et al. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nature Catalysis, 2020, 3(9): 762-770. |
27 | CHEN B, ZHONG X W, ZHOU G M, et al. Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions[J]. Advanced Materials, 2022, 34(5): 2105812. |
28 | ZHANG X Q, JIN Q, NAN Y L, et al. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2021, 60(28): 15503-15509. |
29 | ZHANG S P, YAO Y, YU Y. Frontiers for room-temperature sodium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(2): 529-536. |
30 | ZHAO M, PENG H J, ZHANG Z W, et al. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal[J]. Angewandte Chemie International Edition, 2019, 58(12): 3779-3783. |
31 | WANG N N, WANG Y X, BAI Z C, et al. High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion[J]. Energy & Environmental Science, 2020, 13(2): 562-570. |
32 | XIA X M, DU C F, ZHONG S E, et al. Homogeneous Na deposition enabling high-energy Na-metal batteries[J]. Advanced Functional Materials, 2022, 32(10): 2110280. |
33 | ZHAO R Z, ELZATAHRY A, CHAO D L, et al. Making MXenes more energetic in aqueous battery[J]. Matter, 2022, 5(1): 8-10. |
34 | EL-SHINAWI H, CUSSEN E J, CORR S A. Selective and facile synthesis of sodium sulfide and sodium disulfide polymorphs[J]. Inorganic Chemistry, 2018, 57(13): 7499-7502. |
35 | CHUNG S H, MANTHIRAM A. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials, 2019, 31(27): 1901125. |
36 | ZHOU D, CHEN Y, LI B H, et al. A stable quasi-solid-state sodium-sulfur battery[J]. Angewandte Chemie International Edition, 2018, 57(32): 10168-10172. |
37 | YU X W, MANTHIRAM A. Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries[J]. Chemistry-A European Journal, 2015, 21(11): 4233-4237. |
38 | LI M, LU J, SHI J Y, et al. In situ localized polysulfide injector for the activation of bulk lithium sulfide[J]. Journal of the American Chemical Society, 2021, 143(5): 2185-2189. |
39 | JIANG J C, FAN Q N, ZHENG Z, et al. Nanostructured CoS2-decorated hollow carbon spheres: A performance booster for Li-ion/sulfur batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 6447-6459. |
40 | BLOI L M, PAMPEL J, DÖRFLER S, et al. Sodium sulfide cathodes superseding hard carbon pre-sodiation for the production and operation of sodium-sulfur batteries at room temperature[J]. Advanced Energy Materials, 2020, 10(7): 1903245. |
41 | WANG C L, WANG H, HU X F, et al. Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(9): 1803843. |
42 | FAN X L, YUE J, HAN F D, et al. High-performance all-solid-state Na-S battery enabled by casting-annealing technology[J]. ACS Nano, 2018, 12(4): 3360-3368. |
43 | YUE J, HAN F D, FAN X L, et al. High-performance all-inorganic solid-state sodium-sulfur battery[J]. ACS Nano, 2017, 11(5): 4885-4891. |
44 | ZHANG B W, SHENG T, LIU Y D, et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nature Communications, 2018, 9: 4082. |
45 | ZHANG B W, LI S N, YANG H L, et al. Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism[J]. Cell Reports Physical Science, 2021, 2(8): 100531. |
46 | CHEN B, WANG T S, ZHAO S Y, et al. Efficient reversible conversion between MoS2 and Mo/Na2S enabled by graphene-supported single atom catalysts[J]. Advanced Materials, 2021, 33(12): 2007090. |
47 | YE C, JIN H Y, SHAN J Q, et al. A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries[J]. Nature Communications, 2021, 12: 7195. |
48 | YU X W, MANTHIRAM A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode[J]. Chemistry of Materials, 2016, 28(3): 896-905. |
49 | ZHOU G M, CHEN H, CUI Y. Formulating energy density for designing practical lithium-sulfur batteries[J]. Nature Energy, 2022, 7(4): 312-319. |
50 | SUN L P, LI H, ZHAO M L, et al. High-performance lithium-sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte[J]. Chemical Engineering Journal, 2018, 332: 8-15. |
51 | YUE J P, YAN M, YIN Y X, et al. Progress of the interface design in all-solid-state Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707533. |
52 | CAO Y, ZUO P J, LOU S F, et al. A quasi-solid-state Li-S battery with high energy density, superior stability and safety[J]. Journal of Materials Chemistry A, 2019, 7(11): 6533-6542. |
53 | YANG X F, LUO J, SUN X L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design[J]. Chemical Society Reviews, 2020, 49(7): 2140-2195. |
54 | LIN Y L, HUANG S, ZHONG L, et al. Organic liquid electrolytes in Li-S batteries: Actualities and perspectives[J]. Energy Storage Materials, 2021, 34: 128-147. |
55 | ZHANG B W, WANG Y X, CHOU S L, et al. Fabrication of superior single-atom catalysts toward diverse electrochemical reactions[J]. Small Methods, 2019, 3(9): 1800497. |
56 | HE J R, BHARGAV A, MANTHIRAM A. High-performance anode-free Li-S batteries with an integrated Li2S-electrocatalyst cathode[J]. ACS Energy Letters, 2022, 7(2): 583-590. |
57 | LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-6819. |
58 | CHEN J, FAN X L, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, 5(5): 386-397. |
59 | WANG Y Z, ZHOU D, PALOMARES V, et al. Revitalising sodium-sulfur batteries for non-high-temperature operation: A crucial review[J]. Energy & Environmental Science, 2020, 13(11): 3848-3879. |
60 | NANDA S, MANTHIRAM A. Lithium degradation in lithium-sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling[J]. Energy & Environmental Science, 2020, 13(8): 2501-2514. |
61 | WANG Y X, ZHANG B W, LAI W H, et al. Room-temperature sodium-sulfur batteries: A comprehensive review on research progress and cell chemistry[J]. Advanced Energy Materials, 2017, 7(24): 1602829. |
62 | LIU H W, PEI W, LAI W H, et al. Electrocatalyzing S cathodes via multisulfiphilic sites for superior room-temperature sodium-sulfur batteries[J]. ACS Nano, 2020, 14(6): 7259-7268. |
63 | ZHAO C, XU G L, YU Z, et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites[J]. Nature Nanotechnology, 2021, 16(2): 166-173. |
64 | YE C, JIAO Y, CHAO D L, et al. Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries[J]. Advanced Materials, 2020, 32(12): 1907557. |
65 | YANG H L, ZHANG B W, KONSTANTINOV K, et al. Progress and challenges for all-solid-state sodium batteries[J]. Advanced Energy and Sustainability Research, 2021, 2(2): 2000057. |
66 | YANG N, PENG L L, LI L, et al. Theoretically probing the possible degradation mechanisms of an FeNC catalyst during the oxygen reduction reaction[J]. Chemical Science, 2021, 12(37): 12476-12484. |
67 | ZHENG X Q, ZHANG L, HUANG J W, et al. Boosting hydrogen evolution reaction of nickel sulfides by introducing nonmetallic dopants[J]. The Journal of Physical Chemistry C, 2020, 124(44): 24223-24231. |
68 | XU R, TANG H A, ZHOU Y Y, et al. Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries[J]. Chemical Science, 2022, 13(21): 6224-6232. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 苏月, 刘旭华, 曾芳磊, 任玉荣, 林本才. 聚偏氟乙烯/聚偏氟乙烯磺酸锂/锂盐复合固态电解质的制备及其性能[J]. 储能科学与技术, 2021, 10(6): 2069-2076. |
[4] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[5] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
[6] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
[7] | 赵悠曼, 严小波, 段红坤, 陈泽伟. 碳纳米管导电剂对硅碳负极锂电池性能提升的探索[J]. 储能科学与技术, 2021, 10(1): 118-127. |
[8] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[9] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[10] | 孙歌, 魏芷宣, 张馨元, 陈楠, 陈岗, 杜菲. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265. |
[11] | 吴洁, 江小标, 杨旸, 吴勇民, 朱蕾, 汤卫平. NASICON结构Li1+xAlxTi2-x(PO4)3(0≤x≤0.5)固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1472-1488. |
[12] | 杨菁, 刘高瞻, 沈麟, 姚霞银. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术, 2020, 9(5): 1284-1299. |
[13] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
[14] | 屈晨滢, 侯朝霞, 王晓慧, 王健, 王凯, 李思瑶. 凝胶聚合物电解质在固态超级电容器中的研究进展[J]. 储能科学与技术, 2020, 9(3): 776-783. |
[15] | 黄晓, 吴林斌, 黄祯, 林久, 许晓雄. 锂离子固体电解质研究中的电化学测试方法[J]. 储能科学与技术, 2020, 9(2): 479-500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||