Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer
DENG Shiwei,1, WU Jianfang,1, SHI Tuo,2
1.College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, China
2.The Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences, Beijing 100020, China
The fundamental factor determining the performance of solid-state ionic devices is their ionic conductivity. Ion conduction in inorganic solid electrolytes involves migration in the grain bulk and across the grain boundary, which is correlated with the structure of the point defect. The various point defects and their influence on grain bulk conductivity are elucidated here, as well as the grain boundary space-charge layer and the derived characteristics of grain boundary conduction. The content would provide some guidance in the design of solid electrolytes with high ionic conductivity.
Keywords:solid electrolyte
;
defects
;
ion conduction
;
space-charge layer
DENG Shiwei. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer[J]. Energy Storage Science and Technology, 2022, 11(3): 939-947
掺杂点缺陷对固体电解质晶粒体电导的影响主要表现为以下几方面。①改变迁移离子和空位的表观浓度及占位规律,或形成点缺陷缔合体,调控载流子浓度及活化能。由于固体电解质的有效载流子浓度决定于迁移离子和空位的表观浓度,且两者的总量是一定的,因此,离子电导率往往随着掺杂元素量的变化先增大后减小,如图3所示,在Li7-3x Ga x La3Zr2O12和Li3x La2/3-x TiO3(LLTO)中存在相同的现象[14-15]。此外,通过第一性原理计算表明,Li1+x Ta1-x Zr x SiO5中锂离子间存在强相互作用,使部分锂离子处于介稳态,显著降低锂离子迁移活化能,提升离子电导率[16]。Jung等[17]还曾通过理论计算证明,在固体电解质中带电点缺陷与相反电性的载流子能够构成缺陷缔合体,降低载流子的有效浓度,造成离子电导率降低。②调控迁移路径“瓶颈结构”的尺寸,降低锂离子迁移活化能,提升离子电导率。Thangadurai等[18]曾对比Li6SrLa2Ta2O12和Li6BaLa2Ta2O12的离子电导率,发现后者的离子电导率更高,他们将这种现象归结为Ba2+掺杂固体电解质具有更大的离子迁移通道瓶颈结构。值得注意的是,通常一种掺杂点缺陷会产生多种的效应,以Sr2+掺杂LLTO为例,其缺陷化学反应方程式为式(17)
Fig. 6
(a) total conductivity, grain body conductivity and grain boundary conductivity of LLTO solid electrolyte; (b) grain boundary nuclear potential and (c) carrier concentration in space charge layer; (d) comparison of ionic conductivity before and after doping
Fig. 7
(a) curves of grain body and grain boundary conductivity with temperature; (b) curves of grain body conductivity and grain boundary conductivity with grain size; (c) curves of grain boundary nuclear potential with grain size; (d), (e), (f) curves of space-charge layer thickness and carrier concentration of LLTO solid electrolytes with different grain sizes[30]
STRUZIK M, GARBAYO I, PFENNINGER R, et al. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring[J]. Advanced Materials, 2018, 30(44): doi: 10.1002/adma.201804098.
WEDIG A, LUEBBEN M, CHO D Y, et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems[J]. Nature Nanotechnology, 2016, 11(1): 67-74.
LIN Y, FANG S, SU D, et al. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7824.
GAO Y R, NOLAN A M, DU P, et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors[J]. Chemical Reviews, 2020, 120(13): 5954-6008.
LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Advanced Energy Materials, 2018, 8(27): doi: 10.1002/aenm.201800933.
GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): doi: 10.1002/adma.201705702.
BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140-162.
GUO X, WASER R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria[J]. Progress in Materials Science, 2006, 51(2): 151-210.
WU J F, GUO X. Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67–xTiO3[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 5880-5887.
TENHAEFF W E, RANGASAMY E, WANG Y Y, et al. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes[J]. ChemElectroChem, 2014, 1(2): 375-378.
KAWAI H, KUWANO J. Lithium ion conductivity of A-site deficient perovskite solid solution La0.67-x Li3x TiO3[J]. Journal of the Electrochemical Society, 1994, 141(7): L78-L79.
WU J F, CHEN E Y, YU Y, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1542-1552.
WANG Q, WU J F, LU Z H, et al. Solid electrolytes: A new lithium-ion conductor LiTaSiO5: Theoretical prediction, materials synthesis, and ionic conductivity[J]. Advanced Functional Materials, 2019, 29(37): doi: 10.1002/adfm.201904232.
MOON C K, LEE H J, PARK K H, et al. Vacancy-driven Na+ superionic conduction in new Ca-doped Na3PS4 for all-solid-state Na-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2504-2512.
THANGADURAI V, WEPPNER W. Li6ALa2Ta2O12(A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction[J]. Advanced Functional Materials, 2005, 15(1): 107-112.
KUBICEK M, WACHTER-WELZL A, RETTENWANDER D, et al. Oxygen vacancies in fast lithium-ion conducting garnets[J]. Chemistry of Materials, 2017, 29(17): 7189-7196.
WOLFENSTINE J, ALLEN J L, READ J, et al. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature[J]. Journal of Materials Science, 2013, 48(17): 5846-5851.
GREGORI G, MERKLE R, MAIER J. Ion conduction and redistribution at grain boundaries in oxide systems[J]. Progress in Materials Science, 2017, 89: 252-305.
HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255.
GUO X, MI S B, WASER R. Nonlinear electrical properties of grain boundaries in oxygen ion conductors: Acceptor-doped ceria[J]. Electrochemical and Solid-State Letters, 2005, 8(1): doi: 10.1149/1.1830393.
... [12](a) total conductivity, grain body conductivity and grain boundary conductivity of LLTO solid electrolyte; (b) grain boundary nuclear potential and (c) carrier concentration in space charge layer; (d) comparison of ionic conductivity before and after dopingFig. 6
... 掺杂点缺陷对固体电解质晶粒体电导的影响主要表现为以下几方面.①改变迁移离子和空位的表观浓度及占位规律,或形成点缺陷缔合体,调控载流子浓度及活化能.由于固体电解质的有效载流子浓度决定于迁移离子和空位的表观浓度,且两者的总量是一定的,因此,离子电导率往往随着掺杂元素量的变化先增大后减小,如图3所示,在Li7-3x Ga x La3Zr2O12和Li3x La2/3-x TiO3(LLTO)中存在相同的现象[14-15].此外,通过第一性原理计算表明,Li1+x Ta1-x Zr x SiO5中锂离子间存在强相互作用,使部分锂离子处于介稳态,显著降低锂离子迁移活化能,提升离子电导率[16].Jung等[17]还曾通过理论计算证明,在固体电解质中带电点缺陷与相反电性的载流子能够构成缺陷缔合体,降低载流子的有效浓度,造成离子电导率降低.②调控迁移路径“瓶颈结构”的尺寸,降低锂离子迁移活化能,提升离子电导率.Thangadurai等[18]曾对比Li6SrLa2Ta2O12和Li6BaLa2Ta2O12的离子电导率,发现后者的离子电导率更高,他们将这种现象归结为Ba2+掺杂固体电解质具有更大的离子迁移通道瓶颈结构.值得注意的是,通常一种掺杂点缺陷会产生多种的效应,以Sr2+掺杂LLTO为例,其缺陷化学反应方程式为式(17) ...
... [14-15]Variation of solid electrolyte grain conductivity with doping concentration[14-15]Fig. 3
... 掺杂点缺陷对固体电解质晶粒体电导的影响主要表现为以下几方面.①改变迁移离子和空位的表观浓度及占位规律,或形成点缺陷缔合体,调控载流子浓度及活化能.由于固体电解质的有效载流子浓度决定于迁移离子和空位的表观浓度,且两者的总量是一定的,因此,离子电导率往往随着掺杂元素量的变化先增大后减小,如图3所示,在Li7-3x Ga x La3Zr2O12和Li3x La2/3-x TiO3(LLTO)中存在相同的现象[14-15].此外,通过第一性原理计算表明,Li1+x Ta1-x Zr x SiO5中锂离子间存在强相互作用,使部分锂离子处于介稳态,显著降低锂离子迁移活化能,提升离子电导率[16].Jung等[17]还曾通过理论计算证明,在固体电解质中带电点缺陷与相反电性的载流子能够构成缺陷缔合体,降低载流子的有效浓度,造成离子电导率降低.②调控迁移路径“瓶颈结构”的尺寸,降低锂离子迁移活化能,提升离子电导率.Thangadurai等[18]曾对比Li6SrLa2Ta2O12和Li6BaLa2Ta2O12的离子电导率,发现后者的离子电导率更高,他们将这种现象归结为Ba2+掺杂固体电解质具有更大的离子迁移通道瓶颈结构.值得注意的是,通常一种掺杂点缺陷会产生多种的效应,以Sr2+掺杂LLTO为例,其缺陷化学反应方程式为式(17) ...
... -15]Variation of solid electrolyte grain conductivity with doping concentration[14-15]Fig. 3
... 掺杂点缺陷对固体电解质晶粒体电导的影响主要表现为以下几方面.①改变迁移离子和空位的表观浓度及占位规律,或形成点缺陷缔合体,调控载流子浓度及活化能.由于固体电解质的有效载流子浓度决定于迁移离子和空位的表观浓度,且两者的总量是一定的,因此,离子电导率往往随着掺杂元素量的变化先增大后减小,如图3所示,在Li7-3x Ga x La3Zr2O12和Li3x La2/3-x TiO3(LLTO)中存在相同的现象[14-15].此外,通过第一性原理计算表明,Li1+x Ta1-x Zr x SiO5中锂离子间存在强相互作用,使部分锂离子处于介稳态,显著降低锂离子迁移活化能,提升离子电导率[16].Jung等[17]还曾通过理论计算证明,在固体电解质中带电点缺陷与相反电性的载流子能够构成缺陷缔合体,降低载流子的有效浓度,造成离子电导率降低.②调控迁移路径“瓶颈结构”的尺寸,降低锂离子迁移活化能,提升离子电导率.Thangadurai等[18]曾对比Li6SrLa2Ta2O12和Li6BaLa2Ta2O12的离子电导率,发现后者的离子电导率更高,他们将这种现象归结为Ba2+掺杂固体电解质具有更大的离子迁移通道瓶颈结构.值得注意的是,通常一种掺杂点缺陷会产生多种的效应,以Sr2+掺杂LLTO为例,其缺陷化学反应方程式为式(17) ...
1
... 掺杂点缺陷对固体电解质晶粒体电导的影响主要表现为以下几方面.①改变迁移离子和空位的表观浓度及占位规律,或形成点缺陷缔合体,调控载流子浓度及活化能.由于固体电解质的有效载流子浓度决定于迁移离子和空位的表观浓度,且两者的总量是一定的,因此,离子电导率往往随着掺杂元素量的变化先增大后减小,如图3所示,在Li7-3x Ga x La3Zr2O12和Li3x La2/3-x TiO3(LLTO)中存在相同的现象[14-15].此外,通过第一性原理计算表明,Li1+x Ta1-x Zr x SiO5中锂离子间存在强相互作用,使部分锂离子处于介稳态,显著降低锂离子迁移活化能,提升离子电导率[16].Jung等[17]还曾通过理论计算证明,在固体电解质中带电点缺陷与相反电性的载流子能够构成缺陷缔合体,降低载流子的有效浓度,造成离子电导率降低.②调控迁移路径“瓶颈结构”的尺寸,降低锂离子迁移活化能,提升离子电导率.Thangadurai等[18]曾对比Li6SrLa2Ta2O12和Li6BaLa2Ta2O12的离子电导率,发现后者的离子电导率更高,他们将这种现象归结为Ba2+掺杂固体电解质具有更大的离子迁移通道瓶颈结构.值得注意的是,通常一种掺杂点缺陷会产生多种的效应,以Sr2+掺杂LLTO为例,其缺陷化学反应方程式为式(17) ...
1
... 掺杂点缺陷对固体电解质晶粒体电导的影响主要表现为以下几方面.①改变迁移离子和空位的表观浓度及占位规律,或形成点缺陷缔合体,调控载流子浓度及活化能.由于固体电解质的有效载流子浓度决定于迁移离子和空位的表观浓度,且两者的总量是一定的,因此,离子电导率往往随着掺杂元素量的变化先增大后减小,如图3所示,在Li7-3x Ga x La3Zr2O12和Li3x La2/3-x TiO3(LLTO)中存在相同的现象[14-15].此外,通过第一性原理计算表明,Li1+x Ta1-x Zr x SiO5中锂离子间存在强相互作用,使部分锂离子处于介稳态,显著降低锂离子迁移活化能,提升离子电导率[16].Jung等[17]还曾通过理论计算证明,在固体电解质中带电点缺陷与相反电性的载流子能够构成缺陷缔合体,降低载流子的有效浓度,造成离子电导率降低.②调控迁移路径“瓶颈结构”的尺寸,降低锂离子迁移活化能,提升离子电导率.Thangadurai等[18]曾对比Li6SrLa2Ta2O12和Li6BaLa2Ta2O12的离子电导率,发现后者的离子电导率更高,他们将这种现象归结为Ba2+掺杂固体电解质具有更大的离子迁移通道瓶颈结构.值得注意的是,通常一种掺杂点缺陷会产生多种的效应,以Sr2+掺杂LLTO为例,其缺陷化学反应方程式为式(17) ...
(a) total conductivity, grain body conductivity and grain boundary conductivity of LLTO solid electrolyte; (b) grain boundary nuclear potential and (c) carrier concentration in space charge layer; (d) comparison of ionic conductivity before and after dopingFig. 6
(a) total conductivity, grain body conductivity and grain boundary conductivity of LLTO solid electrolyte; (b) grain boundary nuclear potential and (c) carrier concentration in space charge layer; (d) comparison of ionic conductivity before and after dopingFig. 6
(a) curves of grain body and grain boundary conductivity with temperature; (b) curves of grain body conductivity and grain boundary conductivity with grain size; (c) curves of grain boundary nuclear potential with grain size; (d), (e), (f) curves of space-charge layer thickness and carrier concentration of LLTO solid electrolytes with different grain sizes[30]Fig. 7